Home
Class 12
MATHS
To find the sum sin^(2) ""(2pi)/(7) + si...

To find the sum `sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7)`, we follow the following method.
Put `7theta = 2npi`, where `n ` is any integer. Then
`" " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta`
This means that `sin theta` takes the values `0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7)`.
From Eq. (i), we now get
`" " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta `
or `4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3)`
Rejecting the value `sin theta =0`, we get
`" " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3`
or ` 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2)`
or `16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta)`
`" " = 16 sin ^(4) theta - 24 sin ^(2) theta +9`
or `" " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0`
This is cubic in `sin^(2) theta` with the roots `sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7)`.
The sum of these roots is
`" " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4)`.
The value of `(tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7))` is

A

105

B

35

C

210

D

none of these.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \left( \tan^2 \frac{\pi}{7} + \tan^2 \frac{2\pi}{7} + \tan^2 \frac{3\pi}{7} \right) \left( \cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} \right) \] ### Step 1: Define the variables Let: \[ z = \tan \theta \quad \text{where } \theta = \frac{\pi}{7}, \frac{2\pi}{7}, \frac{3\pi}{7} \] ### Step 2: Use the identity for tangent Using the identity for tangent: \[ \tan(4\theta) = \frac{4\tan \theta - 4\tan^3 \theta}{1 - 6\tan^2 \theta + \tan^4 \theta} \] and \[ \tan(3\theta) = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} \] ### Step 3: Set up the equation From the above identities, we can set up the equation: \[ \frac{4z - 4z^3}{1 - 6z^2 + z^4} = -\frac{3z - z^3}{1 - 3z^2} \] ### Step 4: Cross-multiply Cross-multiplying gives: \[ (4z - 4z^3)(1 - 3z^2) = -(3z - z^3)(1 - 6z^2 + z^4) \] ### Step 5: Simplify the equation Expanding both sides: \[ 4z - 12z^3 - 4z^3 + 12z^5 = -3z + 18z^3 - z^5 + 6z^5 - 3z^7 \] Combine like terms to form a polynomial equation. ### Step 6: Rearranging Rearranging gives us a cubic equation in \(z^2\): \[ z^6 - 21z^4 + 35z^2 - 7 = 0 \] ### Step 7: Roots of the cubic equation The roots of this cubic equation correspond to \(\tan^2 \frac{\pi}{7}\), \(\tan^2 \frac{2\pi}{7}\), and \(\tan^2 \frac{3\pi}{7}\). ### Step 8: Sum of the roots Using the property of the sum of the roots for a cubic equation \(ax^3 + bx^2 + cx + d = 0\): \[ \text{Sum of roots} = -\frac{b}{a} = 21 \] ### Step 9: Finding cotangent values Since \(\cot^2 \theta = \frac{1}{\tan^2 \theta}\), we can find the sum of the cotangent squares: \[ \cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} = \frac{1}{\tan^2 \frac{\pi}{7}} + \frac{1}{\tan^2 \frac{2\pi}{7}} + \frac{1}{\tan^2 \frac{3\pi}{7}} \] This can be expressed as: \[ \frac{\tan^2 \frac{2\pi}{7} \tan^2 \frac{3\pi}{7} + \tan^2 \frac{\pi}{7} \tan^2 \frac{3\pi}{7} + \tan^2 \frac{\pi}{7} \tan^2 \frac{2\pi}{7}}{\tan^2 \frac{\pi}{7} \tan^2 \frac{2\pi}{7} \tan^2 \frac{3\pi}{7}} \] ### Step 10: Sum of cotangent roots Using the property of roots for the reciprocal polynomial, we find: \[ \text{Sum of roots} = 5 \] ### Step 11: Final calculation Now we can calculate the final expression: \[ \left( \tan^2 \frac{\pi}{7} + \tan^2 \frac{2\pi}{7} + \tan^2 \frac{3\pi}{7} \right) \left( \cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} \right) = 21 \times 5 = 105 \] ### Conclusion Thus, the value of the expression is: \[ \boxed{105} \]

To solve the problem, we need to find the value of the expression: \[ \left( \tan^2 \frac{\pi}{7} + \tan^2 \frac{2\pi}{7} + \tan^2 \frac{3\pi}{7} \right) \left( \cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} \right) \] ### Step 1: Define the variables Let: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

Solve 7 cos^(2) theta+3 sin^(2) theta=4 .

Prove that : (sin theta + 2 sin 3theta + sin 5theta)/(sin 3theta + 2 sin 5theta + sin 7theta) = (sin 3theta)/(sin 5theta)

If 6sin^(2)theta - sin theta = 1 and 0 le theta le pi , what is the value of sin theta ?

the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

sin ^(4) "" (pi)/(8) + sin ^(4) "" (3pi)/(8) + sin ^(4) "" (5pi)/(8) + sin ^(4)"" (7pi)/(8) = (3)/(2).

Can 6 sin^2 theta - 7 sin theta + 2 = 0 for any real value of theta ?

If sin(pi cos theta)=cos(pi sin theta) , then sin 2theta=

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Linked Comprehension Type)
  1. If sin alpha=A sin(alpha+beta),Ane0, then The value of tan alpha is

    Text Solution

    |

  2. If sin alpha=A sin(alpha+beta),Ane0, then The value of tan beta is

    Text Solution

    |

  3. If sin alpha=A sin(alpha+beta),Ane0, then Which of the following is ...

    Text Solution

    |

  4. If alpha,beta,gamma,delta are the four solutions of the equation tan(t...

    Text Solution

    |

  5. If alpha, beta,gamma are the solutions of the equation tan (theta+(pi)...

    Text Solution

    |

  6. If alpha, beta,gamma,delta are the solutions of the equation tan (thet...

    Text Solution

    |

  7. sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of...

    Text Solution

    |

  8. sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value ...

    Text Solution

    |

  9. sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value ...

    Text Solution

    |

  10. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  11. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  12. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  13. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  14. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  15. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  16. If the angles alpha, beta, gamma of a triangle satisfy the relation, ...

    Text Solution

    |

  17. If the angles alpha, beta, gamma of a triangle satisfy the relation, ...

    Text Solution

    |

  18. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |

  19. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |

  20. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |