Home
Class 12
MATHS
To find the sum sin^(2) ""(2pi)/(7) + si...

To find the sum `sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7)`, we follow the following method.
Put `7theta = 2npi`, where `n ` is any integer. Then
`" " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta`
This means that `sin theta` takes the values `0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7)`.
From Eq. (i), we now get
`" " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta `
or `4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3)`
Rejecting the value `sin theta =0`, we get
`" " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3`
or ` 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2)`
or `16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta)`
`" " = 16 sin ^(4) theta - 24 sin ^(2) theta +9`
or `" " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0`
This is cubic in `sin^(2) theta` with the roots `sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7)`.
The sum of these roots is
`" " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4)`.
The value of `(tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7))` is

A

7

B

`35//3`

C

`21//5`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ \frac{\tan^2\left(\frac{\pi}{7}\right) + \tan^2\left(\frac{2\pi}{7}\right) + \tan^2\left(\frac{3\pi}{7}\right)}{\cot^2\left(\frac{\pi}{7}\right) + \cot^2\left(\frac{2\pi}{7}\right) + \cot^2\left(\frac{3\pi}{7}\right)}. \] ### Step 1: Define the angles Let \( \theta = \frac{\pi}{7} \). Therefore, we need to evaluate: \[ \frac{\tan^2(\theta) + \tan^2(2\theta) + \tan^2(3\theta)}{\cot^2(\theta) + \cot^2(2\theta) + \cot^2(3\theta)}. \] ### Step 2: Rewrite cotangent in terms of tangent Recall that \( \cot^2(x) = \frac{1}{\tan^2(x)} \). Thus, we can rewrite the denominator: \[ \cot^2(\theta) + \cot^2(2\theta) + \cot^2(3\theta) = \frac{1}{\tan^2(\theta)} + \frac{1}{\tan^2(2\theta)} + \frac{1}{\tan^2(3\theta)}. \] ### Step 3: Let \( z = \tan^2(\theta) \) Let \( z_1 = \tan^2(\theta) \), \( z_2 = \tan^2(2\theta) \), and \( z_3 = \tan^2(3\theta) \). The expression now becomes: \[ \frac{z_1 + z_2 + z_3}{\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}}. \] ### Step 4: Simplify the denominator The denominator can be rewritten as: \[ \frac{z_1 + z_2 + z_3}{\frac{z_2 z_3 + z_1 z_3 + z_1 z_2}{z_1 z_2 z_3}} = \frac{(z_1 + z_2 + z_3) z_1 z_2 z_3}{z_2 z_3 + z_1 z_3 + z_1 z_2}. \] ### Step 5: Use the sum of roots From the previous analysis, we know that the sum of the roots \( z_1 + z_2 + z_3 \) is given by the equation derived from the cubic equation in \( z^2 \): \[ z^6 - 21z^4 + 35z^2 - 7 = 0. \] From Vieta's formulas, the sum of the roots \( z_1 + z_2 + z_3 = 21 \). ### Step 6: Find the product of the roots The product of the roots \( z_1 z_2 z_3 \) is given by \( \frac{-(-7)}{1} = 7 \). ### Step 7: Find the sum of the products of the roots taken two at a time The sum of the products of the roots taken two at a time \( z_1 z_2 + z_2 z_3 + z_1 z_3 = 35 \). ### Step 8: Substitute into the expression Now substituting these values into our expression, we have: \[ \frac{21 \cdot 7}{35} = \frac{147}{35} = \frac{21}{5}. \] ### Final Answer Thus, the value of \[ \frac{\tan^2\left(\frac{\pi}{7}\right) + \tan^2\left(\frac{2\pi}{7}\right) + \tan^2\left(\frac{3\pi}{7}\right)}{\cot^2\left(\frac{\pi}{7}\right) + \cot^2\left(\frac{2\pi}{7}\right) + \cot^2\left(\frac{3\pi}{7}\right)} = \frac{21}{5}. \]

To solve the problem, we need to find the value of \[ \frac{\tan^2\left(\frac{\pi}{7}\right) + \tan^2\left(\frac{2\pi}{7}\right) + \tan^2\left(\frac{3\pi}{7}\right)}{\cot^2\left(\frac{\pi}{7}\right) + \cot^2\left(\frac{2\pi}{7}\right) + \cot^2\left(\frac{3\pi}{7}\right)}. \] ### Step 1: Define the angles Let \( \theta = \frac{\pi}{7} \). Therefore, we need to evaluate: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

Solve 7 cos^(2) theta+3 sin^(2) theta=4 .

Prove that : (sin theta + 2 sin 3theta + sin 5theta)/(sin 3theta + 2 sin 5theta + sin 7theta) = (sin 3theta)/(sin 5theta)

If 6sin^(2)theta - sin theta = 1 and 0 le theta le pi , what is the value of sin theta ?

the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

sin ^(4) "" (pi)/(8) + sin ^(4) "" (3pi)/(8) + sin ^(4) "" (5pi)/(8) + sin ^(4)"" (7pi)/(8) = (3)/(2).

Can 6 sin^2 theta - 7 sin theta + 2 = 0 for any real value of theta ?

If sin(pi cos theta)=cos(pi sin theta) , then sin 2theta=

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Linked Comprehension Type)
  1. If sin alpha=A sin(alpha+beta),Ane0, then The value of tan alpha is

    Text Solution

    |

  2. If sin alpha=A sin(alpha+beta),Ane0, then The value of tan beta is

    Text Solution

    |

  3. If sin alpha=A sin(alpha+beta),Ane0, then Which of the following is ...

    Text Solution

    |

  4. If alpha,beta,gamma,delta are the four solutions of the equation tan(t...

    Text Solution

    |

  5. If alpha, beta,gamma are the solutions of the equation tan (theta+(pi)...

    Text Solution

    |

  6. If alpha, beta,gamma,delta are the solutions of the equation tan (thet...

    Text Solution

    |

  7. sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of...

    Text Solution

    |

  8. sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value ...

    Text Solution

    |

  9. sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value ...

    Text Solution

    |

  10. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  11. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  12. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  13. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  14. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  15. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  16. If the angles alpha, beta, gamma of a triangle satisfy the relation, ...

    Text Solution

    |

  17. If the angles alpha, beta, gamma of a triangle satisfy the relation, ...

    Text Solution

    |

  18. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |

  19. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |

  20. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |