Home
Class 12
MATHS
In a Delta ABC, if cosA cos B cos C= (sq...

In a `Delta ABC`, if `cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8)`, then The value of `tan A tan B tanC ` is

A

`5-4sqrt3`

B

`5+4sqrt3`

C

`3+2sqrt3`

D

`3-2sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan A \tan B \tan C \) given that \( \cos A \cos B \cos C = \frac{\sqrt{3}-1}{8} \) and \( \sin A \sin B \sin C = \frac{3+\sqrt{3}}{8} \), we can follow these steps: ### Step 1: Write the expression for \( \tan A \tan B \tan C \) We know that: \[ \tan A = \frac{\sin A}{\cos A}, \quad \tan B = \frac{\sin B}{\cos B}, \quad \tan C = \frac{\sin C}{\cos C} \] Thus, \[ \tan A \tan B \tan C = \frac{\sin A \sin B \sin C}{\cos A \cos B \cos C} \] ### Step 2: Substitute the given values Substituting the values we have: \[ \tan A \tan B \tan C = \frac{\sin A \sin B \sin C}{\cos A \cos B \cos C} = \frac{\frac{3+\sqrt{3}}{8}}{\frac{\sqrt{3}-1}{8}} \] ### Step 3: Simplify the expression The \( \frac{8}{8} \) cancels out: \[ \tan A \tan B \tan C = \frac{3+\sqrt{3}}{\sqrt{3}-1} \] ### Step 4: Rationalize the denominator To rationalize the denominator, multiply the numerator and denominator by \( \sqrt{3}+1 \): \[ \tan A \tan B \tan C = \frac{(3+\sqrt{3})(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} \] ### Step 5: Calculate the denominator Using the difference of squares: \[ (\sqrt{3}-1)(\sqrt{3}+1) = 3 - 1 = 2 \] ### Step 6: Calculate the numerator Now, calculate the numerator: \[ (3+\sqrt{3})(\sqrt{3}+1) = 3\sqrt{3} + 3 + \sqrt{3}\cdot\sqrt{3} + \sqrt{3} = 3\sqrt{3} + 3 + 3 + \sqrt{3} = 4\sqrt{3} + 6 \] ### Step 7: Combine the results Thus, \[ \tan A \tan B \tan C = \frac{4\sqrt{3} + 6}{2} = 2\sqrt{3} + 3 \] ### Final Answer The value of \( \tan A \tan B \tan C \) is: \[ \boxed{2\sqrt{3} + 3} \]

To find the value of \( \tan A \tan B \tan C \) given that \( \cos A \cos B \cos C = \frac{\sqrt{3}-1}{8} \) and \( \sin A \sin B \sin C = \frac{3+\sqrt{3}}{8} \), we can follow these steps: ### Step 1: Write the expression for \( \tan A \tan B \tan C \) We know that: \[ \tan A = \frac{\sin A}{\cos A}, \quad \tan B = \frac{\sin B}{\cos B}, \quad \tan C = \frac{\sin C}{\cos C} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then The value of tan A + tan B + tan C is

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then the respective values of tan A, tan B and tanC are

In a Delta ABC sin Asin B sin C <= (3sqrt3)/8

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

If tan (A-B) = (1)/(sqrt3) and sin A = (1)/(sqrt2) find the value of B.

If 2 cos (A-B) = 2 sin ( A+ B) = sqrt3 find the value of acute angles A and B .

In a triangle ABC if sin A cos B = 1/4 and 3 tan A = tan B , then the triangle is

In DeltaABC , if sin A + sin B + sin C= 1 + sqrt2 and cos A+cos B+cosC =sqrt2 then the triangle is

In a triangle ABC, sin A- cos B = Cos C , then angle B is

If sin A=sqrt3/2 and cos B = sqrt3/2 , find the value of : (tanA-tanB)/(1+tanAtanB)

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Linked Comprehension Type)
  1. If sin alpha=A sin(alpha+beta),Ane0, then The value of tan alpha is

    Text Solution

    |

  2. If sin alpha=A sin(alpha+beta),Ane0, then The value of tan beta is

    Text Solution

    |

  3. If sin alpha=A sin(alpha+beta),Ane0, then Which of the following is ...

    Text Solution

    |

  4. If alpha,beta,gamma,delta are the four solutions of the equation tan(t...

    Text Solution

    |

  5. If alpha, beta,gamma are the solutions of the equation tan (theta+(pi)...

    Text Solution

    |

  6. If alpha, beta,gamma,delta are the solutions of the equation tan (thet...

    Text Solution

    |

  7. sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of...

    Text Solution

    |

  8. sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value ...

    Text Solution

    |

  9. sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value ...

    Text Solution

    |

  10. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  11. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  12. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  13. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  14. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  15. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  16. If the angles alpha, beta, gamma of a triangle satisfy the relation, ...

    Text Solution

    |

  17. If the angles alpha, beta, gamma of a triangle satisfy the relation, ...

    Text Solution

    |

  18. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |

  19. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |

  20. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |