Home
Class 12
MATHS
If the angles alpha, beta, gamma of a tr...

If the angles `alpha, beta, gamma` of a triangle satisfy the relation,
`sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2)`, then
The measure of the smallest angle of the triangle is

A

`30^(@)`

B

`40^(@)`

C

`45^(@)`

D

`50^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation involving the angles of a triangle. Let's denote the angles of the triangle as \( \alpha, \beta, \) and \( \gamma \). The equation given is: \[ \sin\left(\frac{\alpha - \beta}{2}\right) + \sin\left(\frac{\alpha - \gamma}{2}\right) + \sin\left(\frac{3\alpha}{2}\right) = \frac{3}{2} \] ### Step 1: Use the property of angles in a triangle Since \( \alpha, \beta, \gamma \) are the angles of a triangle, we know that: \[ \alpha + \beta + \gamma = 180^\circ \] ### Step 2: Express \( \alpha \) in terms of \( \beta \) and \( \gamma \) From the triangle angle sum property, we can express \( \alpha \) as: \[ \alpha = 180^\circ - \beta - \gamma \] ### Step 3: Substitute \( \alpha \) into the equation Now, substitute \( \alpha \) into the original equation: \[ \sin\left(\frac{(180^\circ - \beta - \gamma) - \beta}{2}\right) + \sin\left(\frac{(180^\circ - \beta - \gamma) - \gamma}{2}\right) + \sin\left(\frac{3(180^\circ - \beta - \gamma)}{2}\right) = \frac{3}{2} \] ### Step 4: Simplify the sine terms Using the sine subtraction identity, we can simplify: 1. \( \frac{(180^\circ - \beta - \gamma) - \beta}{2} = \frac{180^\circ - 2\beta - \gamma}{2} = 90^\circ - \frac{2\beta + \gamma}{2} \) 2. \( \frac{(180^\circ - \beta - \gamma) - \gamma}{2} = \frac{180^\circ - \beta - 2\gamma}{2} = 90^\circ - \frac{\beta + 2\gamma}{2} \) 3. \( \frac{3(180^\circ - \beta - \gamma)}{2} = 270^\circ - \frac{3(\beta + \gamma)}{2} \) Thus, the equation becomes: \[ \sin\left(90^\circ - \frac{2\beta + \gamma}{2}\right) + \sin\left(90^\circ - \frac{\beta + 2\gamma}{2}\right) + \sin\left(270^\circ - \frac{3(\beta + \gamma)}{2}\right) = \frac{3}{2} \] Using the identity \( \sin(90^\circ - x) = \cos(x) \) and \( \sin(270^\circ - x) = -\cos(x) \): \[ \cos\left(\frac{2\beta + \gamma}{2}\right) + \cos\left(\frac{\beta + 2\gamma}{2}\right) - \cos\left(\frac{3(\beta + \gamma)}{2}\right) = \frac{3}{2} \] ### Step 5: Analyze the equation This equation is complex, but we can analyze the values of \( \beta \) and \( \gamma \) knowing they are angles of a triangle. ### Step 6: Assume \( \beta = \gamma \) Since \( \beta \) and \( \gamma \) are equal in many triangles, let's assume \( \beta = \gamma \): Then \( \alpha + 2\beta = 180^\circ \) implies \( \alpha = 180^\circ - 2\beta \). Substituting back into the equation gives: \[ \sin\left(\frac{(180^\circ - 2\beta) - \beta}{2}\right) + \sin\left(\frac{(180^\circ - 2\beta) - \beta}{2}\right) + \sin\left(\frac{3(180^\circ - 2\beta)}{2}\right) = \frac{3}{2} \] This simplifies to: \[ 2\sin\left(90^\circ - \frac{3\beta}{2}\right) + \sin(270^\circ - 3\beta) = \frac{3}{2} \] ### Step 7: Solve for \( \beta \) By solving this equation, we find that \( \beta = 40^\circ \) and hence \( \gamma = 40^\circ \) and \( \alpha = 100^\circ \). ### Conclusion The smallest angle in the triangle is: \[ \boxed{40^\circ} \]

To solve the problem, we need to analyze the given equation involving the angles of a triangle. Let's denote the angles of the triangle as \( \alpha, \beta, \) and \( \gamma \). The equation given is: \[ \sin\left(\frac{\alpha - \beta}{2}\right) + \sin\left(\frac{\alpha - \gamma}{2}\right) + \sin\left(\frac{3\alpha}{2}\right) = \frac{3}{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then Triangle is

Three positive acute angles alpha, beta and gamma satisfy the relation tan. (beta)/(2)=(1)/(3)cot.(alpha)/(2)and cot.(gamma)/(2)=(1)/(2)(3tan.(alpha)/(2)+cot.(alpha)/(2)) . Then, the value of alpha+beta+gamma is equal to

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

If a line makes anles alpha, beta, gamma with the coordinate axes, porve that sin^2alpha+sin^2beta+sin^2gamma=2

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

if alpha, beta, gamma are the roots of the equation x^(3) + 3x + 2=0 " then " (alpha^(3) +beta^(3)+gamma^(3))/(alpha^(2) +beta^(2)+gamma^(2))

If vec(A) makes an angle alpha, beta and gamma from x,y and z axis respectively then sin^(2)alpha+sin^(2) beta+sin^(2) gamma=

Prove that: sinalpha+sinbeta+singamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/2)sin((beta+gamma)/2)sin((gamma+alpha)/2)dot

If a vector makes angles alpha,beta,gamma. with . OX ,O Ya n dO Z respectively, prove that sin^2alpha+sin^2beta+sin^2gamma=2.

Sum of n terms of the series sinalpha-sin(alpha+beta)+sin(alpha+2beta)-sin(alpha+3beta)+….

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Linked Comprehension Type)
  1. If sin alpha=A sin(alpha+beta),Ane0, then The value of tan alpha is

    Text Solution

    |

  2. If sin alpha=A sin(alpha+beta),Ane0, then The value of tan beta is

    Text Solution

    |

  3. If sin alpha=A sin(alpha+beta),Ane0, then Which of the following is ...

    Text Solution

    |

  4. If alpha,beta,gamma,delta are the four solutions of the equation tan(t...

    Text Solution

    |

  5. If alpha, beta,gamma are the solutions of the equation tan (theta+(pi)...

    Text Solution

    |

  6. If alpha, beta,gamma,delta are the solutions of the equation tan (thet...

    Text Solution

    |

  7. sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of...

    Text Solution

    |

  8. sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value ...

    Text Solution

    |

  9. sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value ...

    Text Solution

    |

  10. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  11. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  12. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  13. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  14. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  15. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  16. If the angles alpha, beta, gamma of a triangle satisfy the relation, ...

    Text Solution

    |

  17. If the angles alpha, beta, gamma of a triangle satisfy the relation, ...

    Text Solution

    |

  18. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |

  19. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |

  20. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |