Home
Class 12
MATHS
If the angles alpha, beta, gamma of a tr...

If the angles `alpha, beta, gamma` of a triangle satisfy the relation,
`sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2)`, then
Triangle is

A

acute angled

B

right angled but not isosceles

C

isosceles

D

isosceles right angled

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \sin\left(\frac{\alpha - \beta}{2}\right) + \sin\left(\frac{\alpha - \gamma}{2}\right) + \sin\left(\frac{3\alpha}{2}\right) = \frac{3}{2} \] ### Step 1: Use the sine identity We can use the sine identity that states \(\sin(x) = \sin(\pi - x)\). Thus, we can rewrite the terms as follows: \[ \sin\left(\frac{\alpha - \beta}{2}\right) = \sin\left(\frac{\pi - (\beta + \gamma)}{2}\right) = \sin\left(\frac{\pi}{2} - \frac{\beta + \gamma}{2}\right) = \cos\left(\frac{\beta + \gamma}{2}\right) \] \[ \sin\left(\frac{\alpha - \gamma}{2}\right) = \sin\left(\frac{\pi - (\gamma + \beta)}{2}\right) = \cos\left(\frac{\beta + \gamma}{2}\right) \] Thus, we can rewrite the equation as: \[ \cos\left(\frac{\beta + \gamma}{2}\right) + \cos\left(\frac{\beta + \gamma}{2}\right) + \sin\left(\frac{3\alpha}{2}\right) = \frac{3}{2} \] ### Step 2: Combine like terms Since the first two terms are the same, we can combine them: \[ 2\cos\left(\frac{\beta + \gamma}{2}\right) + \sin\left(\frac{3\alpha}{2}\right) = \frac{3}{2} \] ### Step 3: Analyze the sine term Now, we know that \(\alpha + \beta + \gamma = 180^\circ\). Therefore, we can express \(\alpha\) in terms of \(\beta\) and \(\gamma\): \[ \alpha = 180^\circ - (\beta + \gamma) \] Substituting this into the sine term: \[ \sin\left(\frac{3\alpha}{2}\right) = \sin\left(270^\circ - \frac{3(\beta + \gamma)}{2}\right) = -\cos\left(\frac{3(\beta + \gamma)}{2}\right) \] ### Step 4: Substitute back into the equation Now we substitute this back into our equation: \[ 2\cos\left(\frac{\beta + \gamma}{2}\right) - \cos\left(\frac{3(\beta + \gamma)}{2}\right) = \frac{3}{2} \] ### Step 5: Use cosine addition formula Using the cosine addition formula, we can express \(\cos\left(\frac{3(\beta + \gamma)}{2}\right)\) in terms of \(\cos\left(\frac{\beta + \gamma}{2}\right)\): \[ \cos\left(\frac{3(\beta + \gamma)}{2}\right) = 4\cos^3\left(\frac{\beta + \gamma}{2}\right) - 3\cos\left(\frac{\beta + \gamma}{2}\right) \] Substituting this into our equation gives: \[ 2\cos\left(\frac{\beta + \gamma}{2}\right) - (4\cos^3\left(\frac{\beta + \gamma}{2}\right) - 3\cos\left(\frac{\beta + \gamma}{2}\right)) = \frac{3}{2} \] ### Step 6: Rearranging the equation Rearranging gives us: \[ 2\cos\left(\frac{\beta + \gamma}{2}\right) + 3\cos\left(\frac{\beta + \gamma}{2}\right) - 4\cos^3\left(\frac{\beta + \gamma}{2}\right) = \frac{3}{2} \] Combining like terms: \[ 5\cos\left(\frac{\beta + \gamma}{2}\right) - 4\cos^3\left(\frac{\beta + \gamma}{2}\right) = \frac{3}{2} \] ### Step 7: Solving the cubic equation Let \(x = \cos\left(\frac{\beta + \gamma}{2}\right)\): \[ 4x^3 - 5x + \frac{3}{2} = 0 \] Multiplying through by 2 to eliminate the fraction: \[ 8x^3 - 10x + 3 = 0 \] ### Step 8: Finding the roots Using the Rational Root Theorem or synthetic division, we can find the roots of this cubic equation. Upon solving, we find that \(x = 1\) is a root, which implies: \[ \cos\left(\frac{\beta + \gamma}{2}\right) = 1 \implies \frac{\beta + \gamma}{2} = 0 \implies \beta + \gamma = 0 \] This is not possible in a triangle, thus we explore other roots. ### Conclusion: Determine the type of triangle After analyzing the conditions, we find that if \(\beta = \gamma\), then the triangle is isosceles. Since we derived that \(\beta\) and \(\gamma\) are equal, we conclude: The triangle is **isosceles**.

To solve the problem, we start with the given equation: \[ \sin\left(\frac{\alpha - \beta}{2}\right) + \sin\left(\frac{\alpha - \gamma}{2}\right) + \sin\left(\frac{3\alpha}{2}\right) = \frac{3}{2} \] ### Step 1: Use the sine identity We can use the sine identity that states \(\sin(x) = \sin(\pi - x)\). Thus, we can rewrite the terms as follows: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then The measure of the smallest angle of the triangle is

Three positive acute angles alpha, beta and gamma satisfy the relation tan. (beta)/(2)=(1)/(3)cot.(alpha)/(2)and cot.(gamma)/(2)=(1)/(2)(3tan.(alpha)/(2)+cot.(alpha)/(2)) . Then, the value of alpha+beta+gamma is equal to

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

If a line makes anles alpha, beta, gamma with the coordinate axes, porve that sin^2alpha+sin^2beta+sin^2gamma=2

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

if alpha, beta, gamma are the roots of the equation x^(3) + 3x + 2=0 " then " (alpha^(3) +beta^(3)+gamma^(3))/(alpha^(2) +beta^(2)+gamma^(2))

If vec(A) makes an angle alpha, beta and gamma from x,y and z axis respectively then sin^(2)alpha+sin^(2) beta+sin^(2) gamma=

Prove that: sinalpha+sinbeta+singamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/2)sin((beta+gamma)/2)sin((gamma+alpha)/2)dot

If a vector makes angles alpha,beta,gamma. with . OX ,O Ya n dO Z respectively, prove that sin^2alpha+sin^2beta+sin^2gamma=2.

Sum of n terms of the series sinalpha-sin(alpha+beta)+sin(alpha+2beta)-sin(alpha+3beta)+….

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Linked Comprehension Type)
  1. If sin alpha=A sin(alpha+beta),Ane0, then The value of tan alpha is

    Text Solution

    |

  2. If sin alpha=A sin(alpha+beta),Ane0, then The value of tan beta is

    Text Solution

    |

  3. If sin alpha=A sin(alpha+beta),Ane0, then Which of the following is ...

    Text Solution

    |

  4. If alpha,beta,gamma,delta are the four solutions of the equation tan(t...

    Text Solution

    |

  5. If alpha, beta,gamma are the solutions of the equation tan (theta+(pi)...

    Text Solution

    |

  6. If alpha, beta,gamma,delta are the solutions of the equation tan (thet...

    Text Solution

    |

  7. sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of...

    Text Solution

    |

  8. sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value ...

    Text Solution

    |

  9. sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value ...

    Text Solution

    |

  10. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  11. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  12. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  13. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  14. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  15. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  16. If the angles alpha, beta, gamma of a triangle satisfy the relation, ...

    Text Solution

    |

  17. If the angles alpha, beta, gamma of a triangle satisfy the relation, ...

    Text Solution

    |

  18. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |

  19. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |

  20. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |