Home
Class 12
MATHS
A line OA of length r starts from its in...

A line OA of length r starts from its initial position OX and traces an angle AOB = `alpha` in the anitclockwise direction. It then traces back in the clockwise direction an angle BOC = `3theta` ( where `alpha gt 3 theta`). L is the foot of the perpendicular from C on OA. Also, `(sin^(3)theta)/(CL) = (cos^(3)theta)/(OL)=1`
`(2r sin alpha)/(1+2r cos alpha)` is equal to

A

`tan^(2) theta`

B

`cot^(2) theta`

C

`cot 2theta`

D

`tan 2 theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given information and derive the required expression. ### Step 1: Understanding the Geometry We have a line OA of length \( r \) that traces an angle \( AOB = \alpha \) in the anti-clockwise direction. Then, it traces back an angle \( BOC = 3\theta \) in the clockwise direction. ### Step 2: Finding Coordinates The coordinates of point A can be expressed as: - \( A = (r \cos \alpha, r \sin \alpha) \) Point C, after tracing back the angle \( 3\theta \), can be represented as: - \( C = (r \cos(\alpha - 3\theta), r \sin(\alpha - 3\theta)) \) ### Step 3: Finding the Foot of the Perpendicular (Point L) Point L is the foot of the perpendicular from point C onto line OA. The coordinates of point L can be derived using the projection of point C onto line OA. ### Step 4: Using the Given Relationships We know that: \[ \frac{\sin^3 \theta}{CL} = \frac{\cos^3 \theta}{OL} = 1 \] From this, we can derive: - \( CL = \sin^3 \theta \) - \( OL = \cos^3 \theta \) ### Step 5: Expressing CL and OL in Terms of r, α, and θ Using the coordinates of points A and C, we can express \( CL \) and \( OL \): - \( CL = r \sin \alpha - r \sin(\alpha - 3\theta) \) - \( OL = r \cos \alpha - r \cos(\alpha - 3\theta) \) ### Step 6: Setting Up the Equations From the relationships given: \[ \sin^3 \theta = CL \quad \text{and} \quad \cos^3 \theta = OL \] Substituting the expressions for \( CL \) and \( OL \): \[ \sin^3 \theta = r \sin \alpha - r \sin(\alpha - 3\theta) \] \[ \cos^3 \theta = r \cos \alpha - r \cos(\alpha - 3\theta) \] ### Step 7: Solving for \( 2r \sin \alpha / (1 + 2r \cos \alpha) \) We need to find: \[ \frac{2r \sin \alpha}{1 + 2r \cos \alpha} \] Using the relationships derived from the previous steps, we can substitute the values of \( CL \) and \( OL \) into this expression. ### Step 8: Final Expression After simplifying the expressions and substituting, we will arrive at the final result: \[ \frac{2r \sin \alpha}{1 + 2r \cos \alpha} = \tan(2\theta) \] ### Conclusion Thus, the final answer is: \[ \frac{2r \sin \alpha}{1 + 2r \cos \alpha} = \tan(2\theta) \]

To solve the problem step by step, we will analyze the given information and derive the required expression. ### Step 1: Understanding the Geometry We have a line OA of length \( r \) that traces an angle \( AOB = \alpha \) in the anti-clockwise direction. Then, it traces back an angle \( BOC = 3\theta \) in the clockwise direction. ### Step 2: Finding Coordinates The coordinates of point A can be expressed as: - \( A = (r \cos \alpha, r \sin \alpha) \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

A line OA of length r starts from its initial position OX and traces an angle AOB = alpha in the anitclockwise direction. It then traces back in the clockwise direction an angle BOC = 3theta ( where alpha gt 3 theta ). L is the foot of the perpendicular from C on OA. Also, (sin^(3)theta)/(CL) = (cos^(3)theta)/(OL)=1 (2r^(2) -1)/(r) is equal to

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

The line passing through (-1,pi/2) and perpendicular to sqrt3 sin(theta) + 2 cos (theta) = 4/r is

If alpha,beta are the roots of the quadratic equation x^2-2(1-sin2theta)x-2 cos^2(2theta) = 0 , then the minimum value of (alpha^2+beta^2) is equal to

If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4 , then the value of (1 - cos alpha + sinalpha)/(1 + sin alpha) is equal to

If sin theta = cos theta find the value of : 3 tan ^(2) theta+ 2 sin ^(2) theta -1

A line makes an angle theta with the x-axis and the y-axis. If it makes an angle alpha with the z - axis such that sin^(2)alpha= 3sin^(2)theta , then cos ^(2)theta is equal to

If sin theta_1 + sintheta_2 + sin theta_3 = 3 then find the value of cos theta_1 + cos theta_2 + cos theta_3.

If alpha and beta are roots of equation 3/4"sin"((theta)/9)=sin^(3)theta+3sin^(3)((theta)/3)+9sin^(3)((theta)/9)+1/(4sqrt(2)) for 0lt theta lt (pi)/2 , then tanalpha+tanbeta is equal to

if the tangent to the curve x=a(theta+sintheta) , y=a(1+costheta) at theta=pi/3 makes an angle alpha x=axis then alpha

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Linked Comprehension Type)
  1. If sin alpha=A sin(alpha+beta),Ane0, then The value of tan alpha is

    Text Solution

    |

  2. If sin alpha=A sin(alpha+beta),Ane0, then The value of tan beta is

    Text Solution

    |

  3. If sin alpha=A sin(alpha+beta),Ane0, then Which of the following is ...

    Text Solution

    |

  4. If alpha,beta,gamma,delta are the four solutions of the equation tan(t...

    Text Solution

    |

  5. If alpha, beta,gamma are the solutions of the equation tan (theta+(pi)...

    Text Solution

    |

  6. If alpha, beta,gamma,delta are the solutions of the equation tan (thet...

    Text Solution

    |

  7. sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of...

    Text Solution

    |

  8. sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value ...

    Text Solution

    |

  9. sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value ...

    Text Solution

    |

  10. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  11. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  12. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  13. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  14. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  15. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  16. If the angles alpha, beta, gamma of a triangle satisfy the relation, ...

    Text Solution

    |

  17. If the angles alpha, beta, gamma of a triangle satisfy the relation, ...

    Text Solution

    |

  18. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |

  19. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |

  20. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |