Home
Class 12
MATHS
sin^(10)x+cos^(10)x=29/16cos^4 2x...

`sin^(10)x+cos^(10)x=29/16cos^4 2x`

Text Solution

AI Generated Solution

To solve the equation \( \sin^{10} x + \cos^{10} x = \frac{29}{16} \cos^4 2x \), we can follow these steps: ### Step 1: Rewrite the left-hand side using half-angle identities We know that: \[ \sin^2 x = \frac{1 - \cos 2x}{2} \quad \text{and} \quad \cos^2 x = \frac{1 + \cos 2x}{2} \] Thus, we can express \( \sin^{10} x \) and \( \cos^{10} x \) as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise ILLUSTRATION|71 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.1|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-2

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1

If y=(sin^(4)x-cos^(4)x+sin^(2) x cos^(2)x)/(sin^(4) x+ cos^(4)x + sin^(2) x cos^(2)x), x in (0, pi/2) , then

Solve the equation 5sin^(2)x-7sinx cosx+16cos^(2)x=4

|(sin^(2) x,cos^(2) x,1),(cos^(2) x,sin^(2) x,1),(- 10,12,2)| =

The number of solutions of the equation 16(sin^(5)x +cos^(5)x)=11(sin x + cos x) in the interval [0,2pi] is

The number of solutions of the equation 16(sin^(5)x +cos^(5)x)=11(sin x + cos x) in the interval [0,2pi] is

Solve the equation 5 sin^(2)x-7 sinx cos x + 16 cos^(2)x=4

Prove that cos ^(3) x sin ^(2) x = (1)/(16) (2cos x - cos 3x - cos 5x).

The values of x in (0, pi) satisfying the equation. |{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0 , are