Home
Class 12
MATHS
Find the number of solution of [cosx]+|s...

Find the number of solution of `[cosx]+|sinx=1inpilt=xlt=3pi` where `[ `` ]` denotes the greatest integer function.

Text Solution

AI Generated Solution

To solve the equation \([ \cos x ] + | \sin x | = 1\) for \(x\) in the interval \([\pi, 3\pi]\), we will analyze the possible values of \([ \cos x ]\) and \(| \sin x |\). ### Step 1: Determine the range of \(\cos x\) and \(\sin x\) The cosine function, \(\cos x\), oscillates between -1 and 1 for all \(x\). Therefore, the greatest integer function \([ \cos x ]\) can take the values: - \(-1\) when \(-1 < \cos x < 0\) - \(0\) when \(0 \leq \cos x < 1\) - \(1\) when \(\cos x = 1\) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.1|12 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.2|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Find the number of solution of [cosx]+|sinx|=1, x inpilt=xlt=3pi (where [ ] denotes the greatest integer function).

Find the number of solution of the equations |cos x |=[x] , (where [.] denotes the greatest integer function ).

Find number of solutions for equation [sin^(-1)x]=x-[x] , where [.] denotes the greatest integer function.

The number of solutions of [sin x+ cos x]=3+ [- sin x]+[-cos x] (where [.] denotes the greatest integer function), x in [0, 2pi] , is

The number of solutions of [sinx+cosx]=3+[-sinx]+[-cosx](w h e r e[] denotes the greatest integer function), x in [0,2pi] , is 0 (b) 4 (c) infinite (d) 1

The number of solution (s) of equation sin sin^(-1)([x])+cos^(-1)cosx=1 (where denotes the greatest integer function) is

Find the number of points of discontinuity for f(x)=[6sinx],0lt=pi([dot] represents the greatest integer function).

Find the inverse of the function: f:Z to Z defined by f(x)=[x+1], where [.] denotes the greatest integer function.

The number of integers in the range of function f(x)= [sinx] + [cosx] + [sinx + cosx] is (where [.] = denotes greatest integer function)

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function