Home
Class 12
MATHS
Solve sin 3 theta-sin theta=4 cos^(2) th...

Solve `sin 3 theta-sin theta=4 cos^(2) theta-2`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin 3\theta - \sin \theta = 4 \cos^2 \theta - 2 \), we will follow a step-by-step approach. ### Step 1: Rewrite the left-hand side using the sine subtraction formula We can use the sine subtraction formula: \[ \sin A - \sin B = 2 \cos \left( \frac{A + B}{2} \right) \sin \left( \frac{A - B}{2} \right) \] In our case, let \( A = 3\theta \) and \( B = \theta \): \[ \sin 3\theta - \sin \theta = 2 \cos \left( \frac{3\theta + \theta}{2} \right) \sin \left( \frac{3\theta - \theta}{2} \right) \] This simplifies to: \[ \sin 3\theta - \sin \theta = 2 \cos (2\theta) \sin (\theta) \] ### Step 2: Rewrite the right-hand side The right-hand side is: \[ 4 \cos^2 \theta - 2 \] We can factor this as: \[ 2(2 \cos^2 \theta - 1) = 2 \cos(2\theta) \] ### Step 3: Set the two sides equal Now we can set the two sides equal: \[ 2 \cos(2\theta) \sin(\theta) = 2 \cos(2\theta) \] ### Step 4: Divide both sides by 2 (assuming \( \cos(2\theta) \neq 0 \)) Dividing both sides by 2 gives: \[ \cos(2\theta) \sin(\theta) = \cos(2\theta) \] ### Step 5: Rearranging the equation We can rearrange this to: \[ \cos(2\theta) \sin(\theta) - \cos(2\theta) = 0 \] Factoring out \( \cos(2\theta) \): \[ \cos(2\theta)(\sin(\theta) - 1) = 0 \] ### Step 6: Solve for \( \theta \) This gives us two cases to solve: **Case 1:** \( \cos(2\theta) = 0 \) The general solution for \( \cos(2\theta) = 0 \) is: \[ 2\theta = \frac{(2n + 1)\pi}{2} \quad \text{for } n \in \mathbb{Z} \] Thus, \[ \theta = \frac{(2n + 1)\pi}{4} \quad \text{for } n \in \mathbb{Z} \] **Case 2:** \( \sin(\theta) - 1 = 0 \) This gives: \[ \sin(\theta) = 1 \] The general solution for \( \sin(\theta) = 1 \) is: \[ \theta = \frac{\pi}{2} + 2k\pi \quad \text{for } k \in \mathbb{Z} \] ### Final Solution Combining both cases, the solutions for \( \theta \) are: \[ \theta = \frac{(2n + 1)\pi}{4} \quad \text{and} \quad \theta = \frac{\pi}{2} + 2k\pi \quad \text{for } n, k \in \mathbb{Z} \]

To solve the equation \( \sin 3\theta - \sin \theta = 4 \cos^2 \theta - 2 \), we will follow a step-by-step approach. ### Step 1: Rewrite the left-hand side using the sine subtraction formula We can use the sine subtraction formula: \[ \sin A - \sin B = 2 \cos \left( \frac{A + B}{2} \right) \sin \left( \frac{A - B}{2} \right) \] In our case, let \( A = 3\theta \) and \( B = \theta \): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.2|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.3|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise ILLUSTRATION|71 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve: sin3theta=sin2theta

Solve sin 2 theta+cos theta=0 .

Solve 3 cos 2 theta-sin theta=2

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Solve: sin3theta+cos2theta=0

Solve sin 6 theta=sin 4 theta-sin 2 theta .

Solve cos 4 theta+ sin 5 theta=2 .

Prove that: sin4 theta=4 sin theta cos^(3)theta-4cos theta sin^(3)theta

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Solve 7cos^2theta+3sin^2theta=4