`sin^2 n theta- sin^2 (n-1)theta= sin^2 theta` where `n` is constant and `n != 0,1`
`sin^2 n theta- sin^2 (n-1)theta= sin^2 theta` where `n` is constant and `n != 0,1`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the equation \( \sin^2 n\theta - \sin^2 (n-1)\theta = \sin^2 \theta \), we can follow these steps:
### Step 1: Use the Difference of Squares Formula
We can rewrite the left-hand side using the difference of squares formula:
\[
a^2 - b^2 = (a - b)(a + b)
\]
Let \( a = \sin n\theta \) and \( b = \sin (n-1)\theta \). Thus, we have:
\[
\sin^2 n\theta - \sin^2 (n-1)\theta = (\sin n\theta - \sin (n-1)\theta)(\sin n\theta + \sin (n-1)\theta)
\]
So, the equation becomes:
\[
(\sin n\theta - \sin (n-1)\theta)(\sin n\theta + \sin (n-1)\theta) = \sin^2 \theta
\]
### Step 2: Express the Difference of Sines
Using the sine difference identity, we can express \( \sin n\theta - \sin (n-1)\theta \):
\[
\sin n\theta - \sin (n-1)\theta = 2 \cos\left(\frac{n + (n-1)}{2}\theta\right) \sin\left(\frac{n - (n-1)}{2}\theta\right) = 2 \cos\left((n - \frac{1}{2})\theta\right) \sin\left(\frac{1}{2}\theta\right)
\]
### Step 3: Substitute Back into the Equation
Substituting this back into our equation gives:
\[
2 \cos\left((n - \frac{1}{2})\theta\right) \sin\left(\frac{1}{2}\theta\right)(\sin n\theta + \sin (n-1)\theta) = \sin^2 \theta
\]
### Step 4: Analyze the Equation
Now we can analyze the equation:
1. \( \sin \theta = 0 \) gives \( \theta = k\pi \) for \( k \in \mathbb{Z} \).
2. The other part of the equation can be simplified to find \( \sin\left(\frac{1}{2}\theta\right) \) and \( \cos\left((n - \frac{1}{2})\theta\right) \).
### Step 5: Solve for \( \theta \)
From \( \sin\left(\frac{1}{2}\theta\right) = 0 \), we get:
\[
\frac{1}{2}\theta = m\pi \implies \theta = 2m\pi \quad (m \in \mathbb{Z})
\]
From \( \cos\left((n - \frac{1}{2})\theta\right) = 0 \), we have:
\[
(n - \frac{1}{2})\theta = \frac{\pi}{2} + q\pi \implies \theta = \frac{(2q + 1)\pi}{2(n - \frac{1}{2}} \quad (q \in \mathbb{Z})
\]
### Final Result
Thus, the solutions for \( \theta \) are:
1. \( \theta = k\pi \) for \( k \in \mathbb{Z} \)
2. \( \theta = \frac{(2q + 1)\pi}{2(n - \frac{1}{2})} \) for \( q \in \mathbb{Z} \)
To solve the equation \( \sin^2 n\theta - \sin^2 (n-1)\theta = \sin^2 \theta \), we can follow these steps:
### Step 1: Use the Difference of Squares Formula
We can rewrite the left-hand side using the difference of squares formula:
\[
a^2 - b^2 = (a - b)(a + b)
\]
Let \( a = \sin n\theta \) and \( b = \sin (n-1)\theta \). Thus, we have:
...
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE ENGLISH|Exercise Concept Application Exercise 4.3|9 VideosTRIGONOMETRIC EQUATIONS
CENGAGE ENGLISH|Exercise Concept Application Exercise 4.4|9 VideosTRIGONOMETRIC EQUATIONS
CENGAGE ENGLISH|Exercise Concept Application Exercise 4.1|12 VideosTHREE-DIMENSIONAL GEOMETRY
CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 VideosTRIGONOMETRIC FUNCTIONS
CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve the equation sin^(2)ntheta - sin^(2)(n-1)theta = sin^(2)theta
If 4n theta = pi , then sin^2 theta+ sin^2 3theta + sin^2 5theta +.... 2n terms is equal to:(1) n , (2) 2n . (3) 3n (4) n^2
Let n ge 2 be a natural number and 0 lt theta lt (pi)/(2) , Then, int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta is equal to (where C is a constant of integration)
To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is
To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is
To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of tan^(2)""(pi)/(7)tan ^(2)""(2pi)/(7) tan ^(2)""(3pi)/(7) is
Prove that sin^2 theta+sin^2 2theta+sin^2 3theta+....+sin^2 n theta=n/2-(sin n theta cos(n+1)theta)/(2sin theta)
The integral I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta simplifies to (where, c is the constant of integration)
Let alpha and beta be the roots of the quadratic equation x^(2) sin theta - x (sin theta cos theta + 1) + cos theta = 0 (0 lt theta lt 45^(@)) , and alpha lt beta . Then Sigma_(n=0)^(oo) (alpha^(n) + ((-1)^(n))/(beta^(n))) is equal to
If |(1+sin^2 theta,sin^2 theta,sin^2 theta),(cos^2 theta,1+cos^2 theta,cos^2 theta),(4sin 4 theta,4sin4theta,1+4sin4theta)|=0, then ... sin 4theta equal to ....
CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Concept Application Exercise 4.2
- Solve 2 sin theta + 1=0.
Text Solution
|
- sin^2 n theta- sin^2 (n-1)theta= sin^2 theta where n is constant and n...
Text Solution
|
- Solve cos theta+cos 7 theta+cos 3theta+cos 5 theta=0,
Text Solution
|
- Solve 3tan^(2) theta-2 sin theta=0.
Text Solution
|
- If sintheta,1,cos2theta are in G.P., then find the general values of t...
Text Solution
|
- Solve (sin 10^(@))^(tan x+tan 3x)=tan 15^(@)+tan 30^(@)+ tan 15^(@). T...
Text Solution
|