Home
Class 12
MATHS
Solve cos theta+cos 7 theta+cos 3theta+c...

Solve `cos theta+cos 7 theta+cos 3theta+cos 5 theta=0`,

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos \theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0 \), we can follow these steps: ### Step 1: Group the terms We can group the terms in pairs: \[ (\cos \theta + \cos 7\theta) + (\cos 3\theta + \cos 5\theta) = 0 \] ### Step 2: Apply the cosine addition formula Using the identity \( \cos A + \cos B = 2 \cos \left( \frac{A+B}{2} \right) \cos \left( \frac{A-B}{2} \right) \), we apply it to both groups: 1. For \( \cos \theta + \cos 7\theta \): \[ \cos \theta + \cos 7\theta = 2 \cos \left( \frac{\theta + 7\theta}{2} \right) \cos \left( \frac{\theta - 7\theta}{2} \right) = 2 \cos (4\theta) \cos (3\theta) \] 2. For \( \cos 3\theta + \cos 5\theta \): \[ \cos 3\theta + \cos 5\theta = 2 \cos \left( \frac{3\theta + 5\theta}{2} \right) \cos \left( \frac{3\theta - 5\theta}{2} \right) = 2 \cos (4\theta) \cos (1\theta) \] ### Step 3: Combine the results Now substituting back into the equation: \[ 2 \cos (4\theta) \cos (3\theta) + 2 \cos (4\theta) \cos (1\theta) = 0 \] Factoring out \( 2 \cos (4\theta) \): \[ 2 \cos (4\theta) (\cos (3\theta) + \cos (1\theta)) = 0 \] ### Step 4: Set each factor to zero This gives us two equations to solve: 1. \( \cos (4\theta) = 0 \) 2. \( \cos (3\theta) + \cos (1\theta) = 0 \) ### Step 5: Solve \( \cos (4\theta) = 0 \) The cosine function equals zero at odd multiples of \( \frac{\pi}{2} \): \[ 4\theta = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] Thus, \[ \theta = \frac{\pi}{8} + \frac{n\pi}{4} \] ### Step 6: Solve \( \cos (3\theta) + \cos (1\theta) = 0 \) Using the identity again: \[ \cos (3\theta) = -\cos (1\theta) \] This can be rewritten as: \[ \cos (3\theta) + \cos (1\theta) = 0 \implies 2 \cos \left( \frac{3\theta + 1\theta}{2} \right) \cos \left( \frac{3\theta - 1\theta}{2} \right) = 0 \] This leads to: \[ 2 \cos (2\theta) \cos (1\theta) = 0 \] Thus, we have: 1. \( \cos (2\theta) = 0 \) 2. \( \cos (1\theta) = 0 \) ### Step 7: Solve \( \cos (2\theta) = 0 \) \[ 2\theta = \frac{\pi}{2} + m\pi \quad (m \in \mathbb{Z}) \] Thus, \[ \theta = \frac{\pi}{4} + \frac{m\pi}{2} \] ### Step 8: Solve \( \cos (1\theta) = 0 \) \[ \theta = \frac{\pi}{2} + k\pi \quad (k \in \mathbb{Z}) \] ### Final Solutions Combining all solutions, we have: \[ \theta = \frac{\pi}{8}, \quad \theta = \frac{\pi}{4}, \quad \theta = \frac{\pi}{2} + k\pi \]

To solve the equation \( \cos \theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0 \), we can follow these steps: ### Step 1: Group the terms We can group the terms in pairs: \[ (\cos \theta + \cos 7\theta) + (\cos 3\theta + \cos 5\theta) = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.3|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.4|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.1|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve cos theta+cos 2theta+cos 3theta=0 .

Solve cos theta+cos 3 theta-2 cos 2 theta=0 .

Prove (cos 3theta+ 2 cos 5theta+ cos 7theta)/( cos theta+ 2 cos 3theta+ cos 5theta)= cos 2theta- sin 2theta tan 3theta .

Prove that ( cos theta + cos 2 theta + cos 3 theta + cos 4 theta)/(sin theta + sin 2 theta + sin 3 theta + sin 4 theta)= cot ""(5theta)/(2).

Solve: cos5theta=cos2theta

Solve: cos2theta=cos^(2)theta

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

Solve : cos 6 theta + cos 4 theta + cos 2 theta + 1 = 0, 0^(@) lt theta lt 180^(@)

Solve sin 2 theta+cos theta=0 .

Prove that : (sin theta + sin 3theta + sin 5theta)/(cos theta + cos 3theta + cos 5theta) = tan 3theta