Home
Class 12
MATHS
Solve 3tan^(2) theta-2 sin theta=0....

Solve `3tan^(2) theta-2 sin theta=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3\tan^2 \theta - 2\sin \theta = 0\), we can follow these steps: ### Step 1: Rewrite the equation Starting with the original equation: \[ 3\tan^2 \theta - 2\sin \theta = 0 \] We can rearrange it to: \[ 3\tan^2 \theta = 2\sin \theta \] ### Step 2: Use the identity for \(\tan^2 \theta\) We know that: \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \] Substituting this into the equation gives: \[ 3\frac{\sin^2 \theta}{\cos^2 \theta} = 2\sin \theta \] ### Step 3: Clear the fraction Multiplying both sides by \(\cos^2 \theta\) (assuming \(\cos \theta \neq 0\)): \[ 3\sin^2 \theta = 2\sin \theta \cos^2 \theta \] ### Step 4: Use the Pythagorean identity We know that \(\cos^2 \theta = 1 - \sin^2 \theta\). Substituting this gives: \[ 3\sin^2 \theta = 2\sin \theta (1 - \sin^2 \theta) \] Expanding the right side: \[ 3\sin^2 \theta = 2\sin \theta - 2\sin^3 \theta \] ### Step 5: Rearrange the equation Rearranging gives: \[ 2\sin^3 \theta + 3\sin^2 \theta - 2\sin \theta = 0 \] ### Step 6: Factor out \(\sin \theta\) Factoring out \(\sin \theta\): \[ \sin \theta (2\sin^2 \theta + 3\sin \theta - 2) = 0 \] ### Step 7: Solve for \(\sin \theta = 0\) Setting \(\sin \theta = 0\) gives: \[ \theta = n\pi \quad (n \in \mathbb{Z}) \] ### Step 8: Solve the quadratic equation Now, we need to solve the quadratic equation: \[ 2\sin^2 \theta + 3\sin \theta - 2 = 0 \] Using the quadratic formula: \[ \sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a = 2\), \(b = 3\), and \(c = -2\): \[ \sin \theta = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot (-2)}}{2 \cdot 2} \] Calculating the discriminant: \[ \sin \theta = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm 5}{4} \] ### Step 9: Find the values of \(\sin \theta\) Calculating the two possible values: 1. \(\sin \theta = \frac{2}{4} = \frac{1}{2}\) 2. \(\sin \theta = \frac{-8}{4} = -2\) (not possible since \(\sin \theta\) must be between -1 and 1) ### Step 10: Solve for \(\theta\) For \(\sin \theta = \frac{1}{2}\), we know: \[ \theta = \frac{\pi}{6} + 2k\pi \quad \text{or} \quad \theta = \frac{5\pi}{6} + 2k\pi \quad (k \in \mathbb{Z}) \] ### Final Solution Thus, the complete solution set is: \[ \theta = n\pi \quad (n \in \mathbb{Z}) \quad \text{and} \quad \theta = \frac{\pi}{6} + 2k\pi \quad \text{or} \quad \theta = \frac{5\pi}{6} + 2k\pi \quad (k \in \mathbb{Z}) \]

To solve the equation \(3\tan^2 \theta - 2\sin \theta = 0\), we can follow these steps: ### Step 1: Rewrite the equation Starting with the original equation: \[ 3\tan^2 \theta - 2\sin \theta = 0 \] We can rearrange it to: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.3|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.4|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.1|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve 2 cos^(2) theta +3 sin theta=0 .

(1+tan^2theta) sin^2theta

Solve tan^(2) theta+cot^(2) theta=2 .

Solve 2 cos^(2) theta = 3 sin theta

Solve: tan^(2)3theta=cot^(2)theta

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

Solve : tan 3theta tan 2 theta = 1

Solve 3 cos 2 theta-sin theta=2

Solve: tan^(3)theta-3tantheta=0

Solve 7 cos^(2) theta+3 sin^(2) theta=4 .