Home
Class 12
MATHS
If sintheta,1,cos2theta are in G.P., the...

If `sintheta,1,cos2theta` are in G.P., then find the general values of `theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin \theta, 1, \cos 2\theta \) are in geometric progression (G.P.), we need to use the condition for three numbers to be in G.P. The condition states that if \( a, b, c \) are in G.P., then \( b^2 = ac \). ### Step 1: Set Up the Equation Let: - \( a = \sin \theta \) - \( b = 1 \) - \( c = \cos 2\theta \) According to the G.P. condition: \[ 1^2 = \sin \theta \cdot \cos 2\theta \] This simplifies to: \[ 1 = \sin \theta \cdot \cos 2\theta \] ### Step 2: Substitute for \( \cos 2\theta \) Using the double angle identity for cosine, we have: \[ \cos 2\theta = 1 - 2\sin^2 \theta \] Substituting this into our equation gives: \[ 1 = \sin \theta (1 - 2\sin^2 \theta) \] ### Step 3: Rearrange the Equation Expanding the equation: \[ 1 = \sin \theta - 2\sin^3 \theta \] Rearranging it leads to: \[ 2\sin^3 \theta - \sin \theta + 1 = 0 \] ### Step 4: Factor the Cubic Equation We can factor the cubic equation: \[ 2\sin^3 \theta - \sin \theta + 1 = 0 \] This can be factored as: \[ (\sin \theta + 1)(2\sin^2 \theta - 2\sin \theta + 1) = 0 \] ### Step 5: Solve Each Factor 1. From the first factor: \[ \sin \theta + 1 = 0 \implies \sin \theta = -1 \] The general solution for \( \sin \theta = -1 \) is: \[ \theta = \frac{3\pi}{2} + 2n\pi \quad (n \in \mathbb{Z}) \] 2. For the second factor: \[ 2\sin^2 \theta - 2\sin \theta + 1 = 0 \] The discriminant of this quadratic is: \[ (-2)^2 - 4 \cdot 2 \cdot 1 = 4 - 8 = -4 \] Since the discriminant is negative, there are no real roots from this factor. ### Final Answer Thus, the only real solution for \( \theta \) is: \[ \theta = \frac{3\pi}{2} + 2n\pi \quad (n \in \mathbb{Z}) \]

To solve the problem where \( \sin \theta, 1, \cos 2\theta \) are in geometric progression (G.P.), we need to use the condition for three numbers to be in G.P. The condition states that if \( a, b, c \) are in G.P., then \( b^2 = ac \). ### Step 1: Set Up the Equation Let: - \( a = \sin \theta \) - \( b = 1 \) - \( c = \cos 2\theta \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.3|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.4|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.1|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

If sintheta+ costheta=1 , then find the general value of theta .

If 1/6 sin theta, cos theta and tan theta are in G.P. then the general solution for theta is

If sin theta_1 + sintheta_2 + sin theta_3 = 3 then find the value of cos theta_1 + cos theta_2 + cos theta_3.

If sintheta,tantheta,costheta are in G.P. then 4sin^2theta-3sin^4theta+sin^6theta=_________

If sintheta,tantheta,costheta are in G.P. then 4sin^2theta-3sin^4theta+sin^6theta=?

If sintheta=1/3 , then find the value of 2cot^2theta+2 .

If sqrt(3)costheta+sintheta=2 , then general value of theta is:

If sintheta+"cosec "theta=2 , then find the values of sin^(8)theta + "cosec"^(8)theta

If 3tan^(2)theta-2sintheta=0 , then general value of theta is:

If sintheta=(1)/(2) , then find the value of sin2theta