Home
Class 12
MATHS
Solve (sin 10^(@))^(tan x+tan 3x)=tan 15...

Solve `(sin 10^(@))^(tan x+tan 3x)=tan 15^(@)+tan 30^(@)+ tan 15^(@). Tan 30^(@), x in (0, pi]`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sin 10^\circ)^{(\tan x + \tan 3x)} = \tan 15^\circ + \tan 30^\circ + \tan 15^\circ\) for \(x\) in the interval \((0, \pi]\), we can follow these steps: ### Step 1: Simplify the Right-Hand Side (RHS) First, we simplify the RHS: \[ \tan 15^\circ + \tan 30^\circ + \tan 15^\circ = 2\tan 15^\circ + \tan 30^\circ \] Using known values: \[ \tan 15^\circ = 2 - \sqrt{3}, \quad \tan 30^\circ = \frac{1}{\sqrt{3}} \] Thus, \[ 2\tan 15^\circ = 2(2 - \sqrt{3}) = 4 - 2\sqrt{3} \] So, \[ RHS = 4 - 2\sqrt{3} + \frac{1}{\sqrt{3}} \] ### Step 2: Evaluate the Right-Hand Side Calculating \(4 - 2\sqrt{3} + \frac{1}{\sqrt{3}}\): To combine these terms, we can convert \(4\) into a fraction: \[ 4 = \frac{4\sqrt{3}}{\sqrt{3}} \Rightarrow RHS = \frac{4\sqrt{3}}{\sqrt{3}} - \frac{2\sqrt{3}\cdot\sqrt{3}}{3} + \frac{1}{\sqrt{3}} = \frac{4\sqrt{3} - 6 + 1}{\sqrt{3}} = \frac{4\sqrt{3} - 5}{\sqrt{3}} \] ### Step 3: Set Up the Equation Now we have: \[ (\sin 10^\circ)^{(\tan x + \tan 3x)} = \frac{4\sqrt{3} - 5}{\sqrt{3}} \] ### Step 4: Analyze the Left-Hand Side (LHS) For the LHS to equal \(1\), we need: \[ \tan x + \tan 3x = 0 \] This implies: \[ \tan 3x = -\tan x \] ### Step 5: Use the Tangent Addition Formula Using the tangent addition formula: \[ \tan(3x + x) = \frac{\tan 3x + \tan x}{1 - \tan 3x \tan x} = 0 \] This gives us: \[ 3x + x = n\pi \quad \text{for } n \in \mathbb{Z} \] Thus: \[ 4x = n\pi \Rightarrow x = \frac{n\pi}{4} \] ### Step 6: Find Solutions in the Interval Now we find \(x\) in the interval \((0, \pi]\): - For \(n = 1\): \(x = \frac{\pi}{4}\) - For \(n = 2\): \(x = \frac{2\pi}{4} = \frac{\pi}{2}\) - For \(n = 3\): \(x = \frac{3\pi}{4}\) - For \(n = 4\): \(x = \frac{4\pi}{4} = \pi\) Thus, the solutions are: \[ x = \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi \] ### Final Solution The final solutions for the equation are: \[ x = \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi \]

To solve the equation \((\sin 10^\circ)^{(\tan x + \tan 3x)} = \tan 15^\circ + \tan 30^\circ + \tan 15^\circ\) for \(x\) in the interval \((0, \pi]\), we can follow these steps: ### Step 1: Simplify the Right-Hand Side (RHS) First, we simplify the RHS: \[ \tan 15^\circ + \tan 30^\circ + \tan 15^\circ = 2\tan 15^\circ + \tan 30^\circ \] Using known values: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.3|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.4|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.1|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

tan 75 ^(@) - tan 30^(@)- tan 75^(@) tan 30^(@) =1.

tan 5x tan3x tan2x=

Show that: tan 10^(@)tan 15^(@) tan 75^(@)tan 80^(@)=1

Evaluate (tan60^(@)-tan30^(@))/(1+tan60^(@)tan30^(@)) .

Find (in each case, given below) the value of x, if : tan x = (tan 60^(@) - tan 30^(@))/(1 + tan 60^(@) tan 30^(@))

Prove tan 20^0 tan 30^0 tan 40^0 tan 80^0=1

The value of (1- tan 15^(@))/(1 + tan 15^(@))

If x tan 45^@ sin 30^@ = cos 30^@ tan 30^@ , then x is equal to

Verify that sin60^(@)=(2tan 30^(@))/(1+tan^(2)30^(@))

Without using trigonometric tables , prove that : (i) tan20^(@)tan40^(@) tan45^(@)tan50^(@)tan70^(@)=1 (ii) tan1^(@) tan2^(@)tan60^(@)tan88^(@)tan89^(@)=sqrt(3) (iii) cot5^(@)cot10^(@)cot30^(@)cot80^(@)cot85^(@)=sqrt(3) (iv) 4sin10^(@)sin20^(@)sin30^(@)sec70^(@)sec80^(@)=2