Home
Class 12
MATHS
Solve that following equations : "tan"t...

Solve that following equations : `"tan"theta"+"tan"("theta"+(pi)/3)+"tan"(theta+(2pi)/3)=3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation: \[ \tan \theta + \tan\left(\theta + \frac{\pi}{3}\right) + \tan\left(\theta + \frac{2\pi}{3}\right) = 3 \] we will follow these steps: ### Step 1: Use the tangent addition formula We know that: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] We will apply this formula to the second and third terms in the equation. ### Step 2: Expand \(\tan\left(\theta + \frac{\pi}{3}\right)\) and \(\tan\left(\theta + \frac{2\pi}{3}\right)\) Using the tangent addition formula: 1. For \(\tan\left(\theta + \frac{\pi}{3}\right)\): \[ \tan\left(\theta + \frac{\pi}{3}\right) = \frac{\tan \theta + \tan\frac{\pi}{3}}{1 - \tan \theta \tan\frac{\pi}{3}} = \frac{\tan \theta + \sqrt{3}}{1 - \tan \theta \sqrt{3}} \] 2. For \(\tan\left(\theta + \frac{2\pi}{3}\right)\): \[ \tan\left(\theta + \frac{2\pi}{3}\right) = \frac{\tan \theta + \tan\frac{2\pi}{3}}{1 - \tan \theta \tan\frac{2\pi}{3}} = \frac{\tan \theta - \sqrt{3}}{1 + \tan \theta \sqrt{3}} \] ### Step 3: Substitute back into the equation Now, substituting these expansions into the original equation gives: \[ \tan \theta + \frac{\tan \theta + \sqrt{3}}{1 - \tan \theta \sqrt{3}} + \frac{\tan \theta - \sqrt{3}}{1 + \tan \theta \sqrt{3}} = 3 \] ### Step 4: Combine the fractions Let \(x = \tan \theta\). The equation becomes: \[ x + \frac{x + \sqrt{3}}{1 - x\sqrt{3}} + \frac{x - \sqrt{3}}{1 + x\sqrt{3}} = 3 \] To combine the fractions, we will find a common denominator: \[ \text{Common Denominator} = (1 - x\sqrt{3})(1 + x\sqrt{3}) = 1 - 3x^2 \] ### Step 5: Rewrite the equation Now, rewriting the equation with the common denominator: \[ x(1 - 3x^2) + (x + \sqrt{3})(1 + x\sqrt{3}) + (x - \sqrt{3})(1 - x\sqrt{3}) = 3(1 - 3x^2) \] ### Step 6: Simplify the equation After simplifying the left-hand side and setting it equal to the right-hand side, we will collect like terms and rearrange: \[ 3x - 3x^3 + 2\sqrt{3}x = 3 - 9x^2 \] ### Step 7: Rearranging and solving for \(x\) This leads to a polynomial equation in \(x\): \[ 3x^3 - 9x^2 + (3 - 2\sqrt{3})x + 3 = 0 \] ### Step 8: Use the cubic formula or numerical methods To find the roots of this cubic equation, we can use numerical methods or the cubic formula. ### Step 9: Find \(\theta\) Once we have the values of \(x = \tan \theta\), we can find \(\theta\) using: \[ \theta = \tan^{-1}(x) + n\pi \quad (n \in \mathbb{Z}) \] ### Final Answer The final solution will be: \[ \theta = n\pi + \frac{\pi}{12} \quad (n \in \mathbb{Z}) \]

To solve the equation: \[ \tan \theta + \tan\left(\theta + \frac{\pi}{3}\right) + \tan\left(\theta + \frac{2\pi}{3}\right) = 3 \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.5|5 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.6|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.3|9 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve that equations : "tan"theta" + "tan"("theta"+"pi"/3) + "tan"(theta+(2pi)/3)=3

Find the general solutions of the following equations: tan2theta=0 (ii) tan(theta/2)=0 (iii) tan(3theta)/(4)=0

Solve the following equation : tan^2theta+sec^2theta+3=2(sqrt(2)sectheta+tantheta)

Solve the following trigonometric equation: tan3theta=-1

Solve : tan 3theta tan 2 theta = 1

find the general values of ' theta ' from the following equations tantheta+tan2theta=tan3theta

Solve : tan6theta=tan3theta

tantheta+tan(pi/3+theta)+tan((2pi)/(3)+theta)=3

Solve: tan5theta=tan3theta

Solve: tan4 theta = tan2theta