Home
Class 12
MATHS
Solve sec theta-1=(sqrt(2)-1) tan theta....

Solve `sec theta-1=(sqrt(2)-1) tan theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec \theta - 1 = (\sqrt{2} - 1) \tan \theta \), we will follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that \( \sec \theta = \frac{1}{\cos \theta} \) and \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). Therefore, we can rewrite the equation as: \[ \frac{1}{\cos \theta} - 1 = (\sqrt{2} - 1) \frac{\sin \theta}{\cos \theta} \] ### Step 2: Simplify the left side To simplify the left side, we will find a common denominator: \[ \frac{1 - \cos \theta}{\cos \theta} = (\sqrt{2} - 1) \frac{\sin \theta}{\cos \theta} \] Now, we can multiply both sides by \( \cos \theta \) (assuming \( \cos \theta \neq 0 \)): \[ 1 - \cos \theta = (\sqrt{2} - 1) \sin \theta \] ### Step 3: Rearranging the equation Rearranging gives us: \[ 1 - \cos \theta = (\sqrt{2} - 1) \sin \theta \] ### Step 4: Use the identity for sine and cosine We can use the identity \( \sin A \sin B + \cos A \cos B = \cos(A - B) \). We can express the equation in terms of sine and cosine: \[ \sin \theta \sin \frac{\pi}{8} + \cos \theta \cos \frac{\pi}{8} = \cos \left( \theta - \frac{\pi}{8} \right) \] Thus, we can rewrite the equation as: \[ \cos \left( \theta - \frac{\pi}{8} \right) = \cos \frac{\pi}{8} \] ### Step 5: Solve for \( \theta \) The general solution for \( \cos A = \cos B \) is given by: \[ A = 2n\pi \pm B \quad (n \in \mathbb{Z}) \] Applying this to our equation: \[ \theta - \frac{\pi}{8} = 2n\pi \pm \frac{\pi}{8} \] ### Step 6: Isolate \( \theta \) From the above, we can derive two equations: 1. \( \theta - \frac{\pi}{8} = 2n\pi + \frac{\pi}{8} \) 2. \( \theta - \frac{\pi}{8} = 2n\pi - \frac{\pi}{8} \) Solving these gives: 1. \( \theta = 2n\pi + \frac{\pi}{4} \) 2. \( \theta = 2n\pi \) ### Final Solutions Thus, the solutions to the equation are: \[ \theta = 2n\pi + \frac{\pi}{4} \quad \text{and} \quad \theta = 2n\pi \quad (n \in \mathbb{Z}) \]

To solve the equation \( \sec \theta - 1 = (\sqrt{2} - 1) \tan \theta \), we will follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that \( \sec \theta = \frac{1}{\cos \theta} \) and \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). Therefore, we can rewrite the equation as: \[ \frac{1}{\cos \theta} - 1 = (\sqrt{2} - 1) \frac{\sin \theta}{\cos \theta} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.5|5 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.6|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.3|9 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve: sec2theta=2/sqrt(3)

Solve tan3theta=-1

If sec theta =sqrt(2) and (3pi)/(2)lt theta lt 2pi , find the value of (1+tan theta+"cosec"theta)/(1+cot theta-"cosec"theta) .

If sec theta = sqrt(2) and (3pi)/2 lt theta lt 2pi , find the value of (1+tan theta + cosec theta)/(1-cot theta - cosec theta) .

Solve tan 3 theta=-1 .

If "sec"^(2) theta = sqrt(2) (1-"tan"^(2) theta), "then" theta=

Solve tan theta+tan 2 theta+sqrt(3) tan theta tan 2 theta = sqrt(3) .

The general solution of sin^2 theta sec theta +sqrt3 tan theta=0 is (n in 1)

Solve 3(sec^(2) theta+tan^(2) theta)=5 .

Solve 4 cos theta-3 sec theta=tan theta .