Home
Class 12
MATHS
Solve 2^(cos 2x)+1=3.2^(-sin^(2) x)...

Solve `2^(cos 2x)+1=3.2^(-sin^(2) x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2^{\cos 2x} + 1 = 3 \cdot 2^{-\sin^2 x} \), we can follow these steps: ### Step 1: Rewrite the equation Start with the original equation: \[ 2^{\cos 2x} + 1 = 3 \cdot 2^{-\sin^2 x} \] ### Step 2: Substitute for \(\cos 2x\) Using the identity \(\cos 2x = 1 - 2\sin^2 x\), we can substitute: \[ 2^{1 - 2\sin^2 x} + 1 = 3 \cdot 2^{-\sin^2 x} \] ### Step 3: Rewrite the left side We can express the left side as: \[ 2^1 \cdot 2^{-2\sin^2 x} + 1 = 3 \cdot 2^{-\sin^2 x} \] This simplifies to: \[ 2 \cdot 2^{-2\sin^2 x} + 1 = 3 \cdot 2^{-\sin^2 x} \] ### Step 4: Let \( t = \sin^2 x \) Let \( t = \sin^2 x \). Then we can rewrite the equation: \[ 2 \cdot 2^{-2t} + 1 = 3 \cdot 2^{-t} \] ### Step 5: Simplify the equation This can be rewritten as: \[ 2 \cdot \frac{1}{2^{2t}} + 1 = 3 \cdot \frac{1}{2^t} \] Multiplying through by \( 2^{2t} \) to eliminate the fractions gives: \[ 2 + 2^{2t} = 3 \cdot 2^t \] ### Step 6: Rearrange into a standard quadratic form Rearranging the equation, we have: \[ 2^{2t} - 3 \cdot 2^t + 2 = 0 \] Let \( u = 2^t \). Then the equation becomes: \[ u^2 - 3u + 2 = 0 \] ### Step 7: Factor the quadratic equation Factoring gives: \[ (u - 1)(u - 2) = 0 \] Thus, we have: \[ u = 1 \quad \text{or} \quad u = 2 \] ### Step 8: Solve for \( t \) Substituting back for \( u \): 1. If \( u = 1 \): \[ 2^t = 1 \implies t = 0 \implies \sin^2 x = 0 \implies \sin x = 0 \implies x = n\pi \] 2. If \( u = 2 \): \[ 2^t = 2 \implies t = 1 \implies \sin^2 x = 1 \implies \sin x = \pm 1 \implies x = n\pi \pm \frac{\pi}{2} \] ### Final Solutions Thus, the solutions to the original equation are: \[ x = n\pi \quad \text{and} \quad x = n\pi \pm \frac{\pi}{2} \]

To solve the equation \( 2^{\cos 2x} + 1 = 3 \cdot 2^{-\sin^2 x} \), we can follow these steps: ### Step 1: Rewrite the equation Start with the original equation: \[ 2^{\cos 2x} + 1 = 3 \cdot 2^{-\sin^2 x} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.6|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.7|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.4|9 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve 2 sin^(3) x=cos x .

Solve sin 2x=4 cos x .

Solve sin 2x+cos 4x=2 .

Solve sin 2x+cos 4x=2 .

Solve for x : cos^(2)30^(@)+sin^(2)2x=1

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]

Solve sin 3x + cos 2 x =-2

Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

Solve 2 cos^(-1) x + sin^(-1) x = (2pi)/(3)