Home
Class 12
MATHS
Solve tan^(3) x+3 gt 3tan x+tan^(2) x....

Solve `tan^(3) x+3 gt 3tan x+tan^(2) x`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \tan^3 x + 3 > 3 \tan x + \tan^2 x \), we will follow these steps: ### Step 1: Rearranging the Inequality We start by rearranging the inequality to one side: \[ \tan^3 x - \tan^2 x - 3 \tan x + 3 > 0 \] ### Step 2: Factoring the Expression Next, we will factor the left-hand side. We can group the terms: \[ (\tan^3 x - \tan^2 x) + (-3 \tan x + 3) > 0 \] Now, we can factor out common terms: \[ \tan^2 x (\tan x - 1) - 3(\tan x - 1) > 0 \] This can be factored further: \[ (\tan x - 1)(\tan^2 x - 3) > 0 \] ### Step 3: Finding Critical Points Now we will find the critical points by setting each factor to zero: 1. \( \tan x - 1 = 0 \) gives us \( \tan x = 1 \) or \( x = \frac{\pi}{4} + n\pi \) where \( n \in \mathbb{Z} \). 2. \( \tan^2 x - 3 = 0 \) gives us \( \tan x = \sqrt{3} \) or \( \tan x = -\sqrt{3} \). This leads to: - \( \tan x = \sqrt{3} \) gives \( x = \frac{\pi}{3} + n\pi \) - \( \tan x = -\sqrt{3} \) gives \( x = -\frac{\pi}{3} + n\pi \) ### Step 4: Testing Intervals Now we will test the intervals determined by the critical points: 1. \( (-\infty, -\frac{\pi}{3}) \) 2. \( (-\frac{\pi}{3}, \frac{\pi}{4}) \) 3. \( (\frac{\pi}{4}, \frac{\pi}{3}) \) 4. \( (\frac{\pi}{3}, \infty) \) Choose test points in each interval to determine the sign of the product \( (\tan x - 1)(\tan^2 x - 3) \). ### Step 5: Conclusion After testing the intervals, we find: - The product is positive in the intervals: - \( (-\frac{\pi}{3}, \frac{\pi}{4}) \) - \( (\frac{\pi}{3}, \infty) \) Thus, the solution to the inequality is: \[ x \in \left(-\frac{\pi}{3} + n\pi, \frac{\pi}{4} + n\pi\right) \cup \left(\frac{\pi}{3} + n\pi, \frac{\pi}{2} + n\pi\right) \] where \( n \in \mathbb{Z} \).

To solve the inequality \( \tan^3 x + 3 > 3 \tan x + \tan^2 x \), we will follow these steps: ### Step 1: Rearranging the Inequality We start by rearranging the inequality to one side: \[ \tan^3 x - \tan^2 x - 3 \tan x + 3 > 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|90 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Multiple correct type)|31 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.8|4 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve tan^(-1) x gt cot^(-1) x

Solve sin^(-1) x gt tan^(-1) x

Solve tan x+tan 2x+tan 3x = tan x tan 2x tan 3x, x in [0, pi] .

Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .

Solve : tan^(2)x*tan^(2)3x*tan4x=tan^(2)x-tan^(2)3x+tan4x

tan 5x tan3x tan2x=

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3

Solve tan x - tan^2 x gt 0and |2 sin x| lt 1 .

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3