Home
Class 12
MATHS
Solve 2 cos^(2) x+ sin x le 2, where pi/...

Solve `2 cos^(2) x+ sin x le 2`, where `pi//2 le x le 3pi//2`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(2 \cos^2 x + \sin x \leq 2\) for \(x\) in the interval \(\left[\frac{3\pi}{2}, \frac{5\pi}{2}\right]\), we can follow these steps: ### Step 1: Rewrite the inequality We start with the given inequality: \[ 2 \cos^2 x + \sin x \leq 2 \] Using the Pythagorean identity \(\cos^2 x = 1 - \sin^2 x\), we can rewrite \(\cos^2 x\): \[ 2(1 - \sin^2 x) + \sin x \leq 2 \] This simplifies to: \[ 2 - 2\sin^2 x + \sin x \leq 2 \] ### Step 2: Simplify the inequality Subtract \(2\) from both sides: \[ -2\sin^2 x + \sin x \leq 0 \] Rearranging gives: \[ 2\sin^2 x - \sin x \geq 0 \] ### Step 3: Factor the expression Factoring out \(\sin x\): \[ \sin x(2\sin x - 1) \geq 0 \] ### Step 4: Find critical points The critical points occur when: \[ \sin x = 0 \quad \text{or} \quad 2\sin x - 1 = 0 \] Solving \(2\sin x - 1 = 0\) gives: \[ \sin x = \frac{1}{2} \] ### Step 5: Determine the intervals The critical points in the interval \(\left[\frac{3\pi}{2}, \frac{5\pi}{2}\right]\) are: - \(\sin x = 0\) at \(x = 2\pi\) (within the interval) - \(\sin x = \frac{1}{2}\) at \(x = \frac{7\pi}{6}\) and \(x = \frac{11\pi}{6}\) (but only \(\frac{7\pi}{6}\) is in the interval) ### Step 6: Test the intervals We need to test the intervals determined by the critical points: 1. \(\left[\frac{3\pi}{2}, \frac{7\pi}{6}\right)\) 2. \(\left[\frac{7\pi}{6}, 2\pi\right)\) 3. \(\left[2\pi, \frac{5\pi}{2}\right]\) - For \(x = \frac{3\pi}{2}\): \(\sin\left(\frac{3\pi}{2}\right) = -1\), so \(\sin x(2\sin x - 1) < 0\). - For \(x = \frac{7\pi}{6}\): \(\sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2}\), so \(\sin x(2\sin x - 1) < 0\). - For \(x = 2\pi\): \(\sin(2\pi) = 0\), so \(\sin x(2\sin x - 1) = 0\). - For \(x = \frac{5\pi}{2}\): \(\sin\left(\frac{5\pi}{2}\right) = 1\), so \(\sin x(2\sin x - 1) > 0\). ### Step 7: Conclusion The solution to the inequality \(2 \cos^2 x + \sin x \leq 2\) in the interval \(\left[\frac{3\pi}{2}, \frac{5\pi}{2}\right]\) is: \[ x \in \left[2\pi, \frac{5\pi}{2}\right] \]

To solve the inequality \(2 \cos^2 x + \sin x \leq 2\) for \(x\) in the interval \(\left[\frac{3\pi}{2}, \frac{5\pi}{2}\right]\), we can follow these steps: ### Step 1: Rewrite the inequality We start with the given inequality: \[ 2 \cos^2 x + \sin x \leq 2 \] Using the Pythagorean identity \(\cos^2 x = 1 - \sin^2 x\), we can rewrite \(\cos^2 x\): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|90 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Multiple correct type)|31 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.8|4 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve : 2 cos^(2)theta + sin theta le 2 , where pi//2 le theta le 3pi//2.

Solve : 2 cos^(2)theta + sin theta le 2 , where pi/2 le theta le (3pi)/2.

Solve the equation ( sin x + cos x )^(1+ sin 2x )=2 , when -pi le x le pi .

If 0 le x le pi/2 then

The number of points in interval [ - (pi)/(2) , (pi)/(2)], where the graphs of the curves y = cos x and y= sin 3x , -(pi)/(2) le x le (pi)/(2) intersects is

f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi/4),( 2x cot x +b , , pi/4 le x le pi/2), (a cos 2 x - b sin x , , pi/2 lt x le pi):} continuous function AA x in [ 0,pi] " then " 5(a/b)^(2) equals ....

Solve the equation sqrt3 cos x + sin x =1 for - 2pi lt x le 2pi.

Solve 1 le |x-2| le 3

Find the solution set for , 4 sin^(2)x -8 sin x +3 le 0 where x in [0,2pi]

Find the coodinates of the point of intersection of the curves y= cos x , y= sin 3x if -(pi)/(2) le x le (pi)/(2)