Home
Class 12
MATHS
If the sum of all the solutions of the e...

If the sum of all the solutions of the equation `8 cosx.(cos(pi/6+x)cos(pi/6-x)-1/2)=1` in `[0,pi]` is `k pi` then k is equal to

A

`20//9`

B

`2//3`

C

`13//9`

D

`8//9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 8 \cos x \left( \cos\left(\frac{\pi}{6} + x\right) \cos\left(\frac{\pi}{6} - x\right) - \frac{1}{2} \right) = 1 \) for \( x \) in the interval \( [0, \pi] \), we will follow these steps: ### Step 1: Simplify the equation using trigonometric identities We can use the identity \( \cos(a + b) \cos(a - b) = \frac{1}{2}(\cos(2a) + \cos(2b)) \). Here, let \( a = \frac{\pi}{6} \) and \( b = x \): \[ \cos\left(\frac{\pi}{6} + x\right) \cos\left(\frac{\pi}{6} - x\right) = \frac{1}{2}\left(\cos\left(\frac{\pi}{3}\right) + \cos(2x)\right) \] Since \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \), we have: \[ \cos\left(\frac{\pi}{6} + x\right) \cos\left(\frac{\pi}{6} - x\right) = \frac{1}{2}\left(\frac{1}{2} + \cos(2x)\right) = \frac{1}{4} + \frac{1}{2}\cos(2x) \] ### Step 2: Substitute back into the equation Substituting this back into the original equation gives: \[ 8 \cos x \left( \frac{1}{4} + \frac{1}{2} \cos(2x) - \frac{1}{2} \right) = 1 \] \[ 8 \cos x \left( \frac{1}{4} + \frac{1}{2} \cos(2x) - \frac{2}{4} \right) = 1 \] \[ 8 \cos x \left( \frac{1}{2} \cos(2x) - \frac{1}{4} \right) = 1 \] ### Step 3: Simplify further This simplifies to: \[ 2 \cos x \left( 2 \cos(2x) - 1 \right) = 1 \] ### Step 4: Rearranging the equation Rearranging gives: \[ 2 \cos x \cdot 2 \cos(2x) - 2 \cos x = 1 \] \[ 4 \cos x \cos(2x) - 2 \cos x - 1 = 0 \] ### Step 5: Factor the equation We can factor this equation: \[ (4 \cos x \cos(2x) - 2 \cos x - 1) = 0 \] ### Step 6: Setting up for solutions This can be solved using the quadratic formula or by substitution. Let \( y = \cos x \): \[ 4y \cos(2x) - 2y - 1 = 0 \] ### Step 7: Solving for \( \cos(2x) \) Using the double angle formula \( \cos(2x) = 2\cos^2 x - 1 \): \[ 4y(2y^2 - 1) - 2y - 1 = 0 \] \[ 8y^3 - 4y - 2y - 1 = 0 \] \[ 8y^3 - 6y - 1 = 0 \] ### Step 8: Finding the roots Using numerical methods or graphing, we can find the roots of the cubic equation. Let's denote the roots as \( y_1, y_2, y_3 \). ### Step 9: Finding \( x \) from \( y \) For each root \( y_i \), we find \( x \) using \( x = \cos^{-1}(y_i) \). ### Step 10: Summing the solutions The solutions \( x_1, x_2, x_3 \) will be in the interval \( [0, \pi] \). We sum these solutions: \[ S = x_1 + x_2 + x_3 \] ### Step 11: Expressing the sum in terms of \( k \) If \( S = k \pi \), we can express \( k \) as: \[ k = \frac{S}{\pi} \] ### Final Result After calculating the roots and their corresponding angles, we find that the sum of all solutions \( S = \frac{13\pi}{9} \), thus: \[ k = \frac{13}{9} \]

To solve the equation \( 8 \cos x \left( \cos\left(\frac{\pi}{6} + x\right) \cos\left(\frac{\pi}{6} - x\right) - \frac{1}{2} \right) = 1 \) for \( x \) in the interval \( [0, \pi] \), we will follow these steps: ### Step 1: Simplify the equation using trigonometric identities We can use the identity \( \cos(a + b) \cos(a - b) = \frac{1}{2}(\cos(2a) + \cos(2b)) \). Here, let \( a = \frac{\pi}{6} \) and \( b = x \): \[ \cos\left(\frac{\pi}{6} + x\right) \cos\left(\frac{\pi}{6} - x\right) = \frac{1}{2}\left(\cos\left(\frac{\pi}{3}\right) + \cos(2x)\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives ((JEE ADVANSED) Single correct answer type)|3 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Multiple correct answer type)|2 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Numerical value type)|21 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation cos^(2)((pi)/(3)cos x - (8pi)/(3))=1 in the interval [0,10pi] is

The number of real solutions of the equation sqrt(1+cos2x) = sqrt(2)cos^(-1)(cosx) in [pi/2,pi] is

The sum of all the solution of the equation costhetacos(pi/3+theta)cos(pi/3-theta)=1/4theta in [0,6pi] (A) 15pi (B) 30pi (C) (100pi)/3 (D) none of these

The number of solution of the equation |cos x|=cos x-2 sin x "in"[0,6 pi] is

The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=0 is

The sum of the roots of the equation |sqrt3cos x-sinx|=2" in "[0, 4pi] is kpi , then the value of 6k is

The number of solutions of the equation (3+cos x)^(2)=4-2sin^(8)x" in "[0, 9pi) is equal to

The sum of all the solution in [0,4pi] of the equation tanx+cotx+1=cos(x+pi/4)i s (a) 3pi (b) pi/2 (c) (7pi)/2 (d) 4pi

Let y=g(x) be the solution of the differential equation sinx ((dy)/(dx))+y cos x=4x, x in (0,pi) If y(pi/2)=0 , then y(pi/6) is equal to

cos(pi/14)+cos((3pi)/14)+cos((5pi)/14)=kcot(pi/14) then k is equal to