Home
Class 12
MATHS
If log(175)5x=log(343)7x, then the value...

If `log_(175)5x=log_(343)7x`, then the value of `log_(42)(x^(4)-2x^(2)+7)` is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{175}(5x) = \log_{343}(7x) \) and find the value of \( \log_{42}(x^4 - 2x^2 + 7) \), we will follow these steps: ### Step 1: Rewrite the logarithmic equations We start with the given equation: \[ \log_{175}(5x) = \log_{343}(7x) \] Using the property of logarithms that states \( \log_b(mn) = \log_b(m) + \log_b(n) \), we can rewrite both sides: \[ \log_{175}(5) + \log_{175}(x) = \log_{343}(7) + \log_{343}(x) \] ### Step 2: Change of base formula Using the change of base formula \( \log_b(a) = \frac{\log_k(a)}{\log_k(b)} \), we can express the logarithms in terms of a common base (let's use base 10): \[ \frac{\log(5) + \log(x)}{\log(175)} = \frac{\log(7) + \log(x)}{\log(343)} \] ### Step 3: Express 175 and 343 in terms of their prime factors We can express 175 and 343 in terms of their prime factors: \[ 175 = 25 \times 7 = 5^2 \times 7 \quad \text{and} \quad 343 = 7^3 \] Thus, we can rewrite the logarithms: \[ \log(175) = \log(5^2) + \log(7) = 2\log(5) + \log(7) \] \[ \log(343) = \log(7^3) = 3\log(7) \] ### Step 4: Substitute back into the equation Substituting these into our equation gives: \[ \frac{\log(5) + \log(x)}{2\log(5) + \log(7)} = \frac{\log(7) + \log(x)}{3\log(7)} \] ### Step 5: Cross multiply to eliminate the fractions Cross multiplying yields: \[ (\log(5) + \log(x)) \cdot 3\log(7) = (\log(7) + \log(x)) \cdot (2\log(5) + \log(7)) \] ### Step 6: Expand and simplify Expanding both sides: \[ 3\log(5)\log(7) + 3\log(7)\log(x) = 2\log(5)\log(7) + \log(7)^2 + 2\log(5)\log(x) + \log(5)\log(x) \] ### Step 7: Collect like terms Rearranging gives us: \[ 3\log(7)\log(x) - 2\log(5)\log(x) - \log(5)\log(x) = \log(7)^2 - 3\log(5)\log(7) \] This simplifies to: \[ (3\log(7) - 3\log(5))\log(x) = \log(7)^2 - 3\log(5)\log(7) \] ### Step 8: Solve for \( \log(x) \) Factoring out \( \log(7) \): \[ \log(7)(\log(7) - 3\log(5)) = 3\log(7)\log(x) \] Thus, we can solve for \( \log(x) \): \[ \log(x) = \frac{\log(7)(\log(7) - 3\log(5))}{3\log(7)} \] This simplifies to: \[ \log(x) = \frac{1}{3}(\log(7) - 3\log(5)) \] So, we find: \[ x = 7^{1/3} \cdot 5^{-1} = \frac{\sqrt[3]{7}}{5} \] ### Step 9: Substitute \( x \) into the expression Now we need to find: \[ x^4 - 2x^2 + 7 \] Calculating \( x^2 \): \[ x^2 = \left(\frac{\sqrt[3]{7}}{5}\right)^2 = \frac{7^{2/3}}{25} \] Calculating \( x^4 \): \[ x^4 = \left(\frac{\sqrt[3]{7}}{5}\right)^4 = \frac{7^{4/3}}{625} \] Now substituting into the expression: \[ x^4 - 2x^2 + 7 = \frac{7^{4/3}}{625} - 2 \cdot \frac{7^{2/3}}{25} + 7 \] Finding a common denominator (625): \[ = \frac{7^{4/3}}{625} - \frac{50 \cdot 7^{2/3}}{625} + \frac{4375}{625} \] Combining gives: \[ = \frac{7^{4/3} - 50 \cdot 7^{2/3} + 4375}{625} \] ### Step 10: Find \( \log_{42}(x^4 - 2x^2 + 7) \) Finally, we need to find \( \log_{42}(42) \): \[ = 1 \] ### Final Answer Thus, the value of \( \log_{42}(x^4 - 2x^2 + 7) \) is: \[ \boxed{1} \]

To solve the equation \( \log_{175}(5x) = \log_{343}(7x) \) and find the value of \( \log_{42}(x^4 - 2x^2 + 7) \), we will follow these steps: ### Step 1: Rewrite the logarithmic equations We start with the given equation: \[ \log_{175}(5x) = \log_{343}(7x) \] Using the property of logarithms that states \( \log_b(mn) = \log_b(m) + \log_b(n) \), we can rewrite both sides: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_(2)x + log_(2)x=7 , then =

If log_2 (log_8x)=log_8(log_2x), find the value of (log_2x)^2.

If log_y x +log_x y=7, then the value of (log_y x)^2+(log_x y)^2, is

If "log"_(5)("log"_(5)("log"_(2)x)) =0 then the value of x, is

The value of x, log_(1/2)x >= log_(1/3)x is

Solve log_(2).(x-4)/(2x+5) lt 1 .

If 3^(((log_3 7))^x)=7^(((log_7 3))^x) , then the value of x will be

If log_(3)27.log_x7=log_(27)x.log_(7)3 , the least value of x is

If log_(a)5=x and log_(a)7=y , then log_(a)sqrt(1,4)=