Home
Class 12
MATHS
The value of log10(sqrt(3-sqrt(5))+sqrt(...

The value of `log_10(sqrt(3-sqrt(5))+sqrt(3+sqrt(5)))` is

A

`1//2`

B

`1//4`

C

`3//2`

D

`3//4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{10}(\sqrt{3 - \sqrt{5}} + \sqrt{3 + \sqrt{5}}) \), we can follow these steps: ### Step 1: Simplify the Expression We start with the expression inside the logarithm: \[ \sqrt{3 - \sqrt{5}} + \sqrt{3 + \sqrt{5}} \] ### Step 2: Rationalize the Terms We can multiply and divide by \( \sqrt{2} \): \[ \sqrt{3 - \sqrt{5}} + \sqrt{3 + \sqrt{5}} = \frac{1}{\sqrt{2}} \left( \sqrt{2(3 - \sqrt{5})} + \sqrt{2(3 + \sqrt{5})} \right) \] ### Step 3: Expand the Terms Now we can simplify the terms under the square roots: \[ \sqrt{2(3 - \sqrt{5})} = \sqrt{6 - 2\sqrt{5}}, \quad \sqrt{2(3 + \sqrt{5})} = \sqrt{6 + 2\sqrt{5}} \] ### Step 4: Recognize Perfect Squares Notice that: \[ 6 - 2\sqrt{5} = (\sqrt{5} - 1)^2 \quad \text{and} \quad 6 + 2\sqrt{5} = (\sqrt{5} + 1)^2 \] Thus, we can write: \[ \sqrt{6 - 2\sqrt{5}} = \sqrt{(\sqrt{5} - 1)^2} = \sqrt{5} - 1 \] \[ \sqrt{6 + 2\sqrt{5}} = \sqrt{(\sqrt{5} + 1)^2} = \sqrt{5} + 1 \] ### Step 5: Combine the Terms Now, substituting back: \[ \sqrt{3 - \sqrt{5}} + \sqrt{3 + \sqrt{5}} = \frac{1}{\sqrt{2}} \left( (\sqrt{5} - 1) + (\sqrt{5} + 1) \right) = \frac{1}{\sqrt{2}} (2\sqrt{5}) = \sqrt{10} \] ### Step 6: Calculate the Logarithm Now we can find the logarithm: \[ \log_{10}(\sqrt{10}) = \log_{10}(10^{1/2}) = \frac{1}{2} \log_{10}(10) = \frac{1}{2} \cdot 1 = \frac{1}{2} \] ### Final Answer Thus, the value of \( \log_{10}(\sqrt{3 - \sqrt{5}} + \sqrt{3 + \sqrt{5}}) \) is: \[ \frac{1}{2} \] ---

To find the value of \( \log_{10}(\sqrt{3 - \sqrt{5}} + \sqrt{3 + \sqrt{5}}) \), we can follow these steps: ### Step 1: Simplify the Expression We start with the expression inside the logarithm: \[ \sqrt{3 - \sqrt{5}} + \sqrt{3 + \sqrt{5}} \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

The value of log_((8-3sqrt7))(8+3sqrt7) is

The value of log_((sqrt(2)-1))(5sqrt(2)-7) is :

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

The value of sqrt(5+2sqrt(6)) is (a) sqrt(3)-sqrt(2) (b) sqrt(3)+sqrt(2) (c) sqrt(5)+sqrt(6) (d) none of these

Find sqrt(2+3sqrt(-5)) + sqrt(2-3sqrt(-5))

Simplify: (2sqrt(3)+sqrt(5))(2sqrt(3)-sqrt(5))

(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)) Is equal to :

The value 4^(5log_(4sqrt(2))(3-sqrt(6))-6log_8(sqrt(3)-sqrt(2))) is

The value of int_5^(10)(sqrt(x+sqrt(20 x-100))+sqrt(x-sqrt(20 x-100)))dx"i s" (1) 10sqrt(5) (2) 5sqrt(5) (3) 10sqrt(2) (4) 8sqrt(2)

The value of int_5^(10)(sqrt(x+sqrt(20 x-100))+sqrt(x-sqrt(20 x-100)))dx is (1) 10sqrt(5) (2) 5sqrt(5) (3) 10sqrt(2) (4) 8sqrt(2)