Home
Class 12
MATHS
If log4A = log6B = log9(A+B) then the va...

If `log_4A = log_6B = log_9(A+B)` then the value of `B/A` is

A

`(sqrt(5)-1)/(4)`

B

`(sqrt(5)+1)/(4)`

C

`(sqrt(5)-1)/(2)`

D

`(sqrt(5)+1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \log_4 A = \log_6 B = \log_9 (A + B) \] Let us denote this common value as \( k \). Therefore, we can express \( A \), \( B \), and \( A + B \) in terms of \( k \): 1. **Express \( A \) in terms of \( k \)**: \[ \log_4 A = k \implies A = 4^k = (2^2)^k = 2^{2k} \] 2. **Express \( B \) in terms of \( k \)**: \[ \log_6 B = k \implies B = 6^k = (2 \cdot 3)^k = 2^k \cdot 3^k \] 3. **Express \( A + B \) in terms of \( k \)**: \[ \log_9 (A + B) = k \implies A + B = 9^k = (3^2)^k = 3^{2k} \] Now we have: - \( A = 2^{2k} \) - \( B = 2^k \cdot 3^k \) - \( A + B = 3^{2k} \) Next, we can substitute \( A \) and \( B \) into the equation for \( A + B \): \[ A + B = 2^{2k} + 2^k \cdot 3^k = 3^{2k} \] 4. **Rearranging the equation**: \[ 2^{2k} + 2^k \cdot 3^k - 3^{2k} = 0 \] 5. **Let \( x = 2^k \)**. Then \( 3^k = \frac{3^{2k}}{x^2} \): \[ x^2 + x \cdot \left(\frac{3^k}{x}\right) - 3^{2k} = 0 \] This simplifies to: \[ x^2 + 3^k x - 3^{2k} = 0 \] 6. **Using the quadratic formula to solve for \( x \)**: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3^k \pm \sqrt{(3^k)^2 + 4 \cdot 3^{2k}}}{2} \] 7. **Finding \( \frac{B}{A} \)**: \[ \frac{B}{A} = \frac{2^k \cdot 3^k}{2^{2k}} = \frac{3^k}{2^k} = \left(\frac{3}{2}\right)^k \] Now, we can substitute \( k \) back into the equation to find \( \frac{B}{A} \). 8. **Final Calculation**: From the quadratic equation, we can find the roots and determine the positive value for \( \frac{B}{A} \). The final result is: \[ \frac{B}{A} = \frac{1 + \sqrt{5}}{2} \]

To solve the problem, we start with the given equation: \[ \log_4 A = \log_6 B = \log_9 (A + B) \] Let us denote this common value as \( k \). Therefore, we can express \( A \), \( B \), and \( A + B \) in terms of \( k \): ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

If (log)_4A=(log)_6B=(log)_9(A+B),t h e n [4(B/A)] (where [ ] represents the greatest integer function) equals ..............

if (a+log_4 3)/(a+log_2 3)= (a+log_8 3)/(a+log_4 3)=b then find the value of b

If (log)_a b=2,(log)_b c=2,a n d(log)_3c=3+(log)_3a , then the value of c//(a b) is............

If log_(b) n = 2 and log_(n) 2b = 2 , then find the value of b.

If log_(4)A=log_(6)B=log_(9)(A+B)," then "[4(B//A)]("where "[*] represents the greatest integer function ) equals _______.

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.

log_(2)a = 3, log_(3)b = 2, log_(4) c = 1 Find the value of 3a + 2b - 10c

If "log"_(a) ab = x, then the value of "log"_(b)ab, is