Home
Class 12
MATHS
The value of log((9)/(4))((1)/(2sqrt(3))...

The value of `log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo)` is

A

`-2`

B

`-1`

C

`-1//2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \log_{\frac{9}{4}}\left(\frac{1}{2\sqrt{3}}\sqrt{6-\frac{1}{2\sqrt{3}}\sqrt{6-\frac{1}{2\sqrt{3}}\sqrt{6-\frac{1}{2\sqrt{3}}}\ldots}}\right) \] Let's denote the infinite nested expression as \( x \): \[ x = \frac{1}{2\sqrt{3}}\sqrt{6 - \frac{1}{2\sqrt{3}}\sqrt{6 - \frac{1}{2\sqrt{3}}\sqrt{6 - \frac{1}{2\sqrt{3}}}\ldots}} \] ### Step 1: Set up the equation Since the expression is nested infinitely, we can express it as: \[ x = \frac{1}{2\sqrt{3}}\sqrt{6 - x} \] ### Step 2: Square both sides To eliminate the square root, we square both sides: \[ x^2 = \left(\frac{1}{2\sqrt{3}}\right)^2 (6 - x) \] This simplifies to: \[ x^2 = \frac{1}{12}(6 - x) \] ### Step 3: Multiply through by 12 To eliminate the fraction, we multiply both sides by 12: \[ 12x^2 = 6 - x \] ### Step 4: Rearrange the equation Rearranging gives us: \[ 12x^2 + x - 6 = 0 \] ### Step 5: Factor the quadratic equation Now we will factor the quadratic equation. We look for two numbers that multiply to \( 12 \times -6 = -72 \) and add to \( 1 \): The factors are \( 9 \) and \( -8 \). Thus, we can write: \[ 12x^2 + 9x - 8x - 6 = 0 \] Grouping gives us: \[ 3x(4x + 3) - 2(4x + 3) = 0 \] Factoring out \( (4x + 3) \): \[ (4x + 3)(3x - 2) = 0 \] ### Step 6: Solve for \( x \) Setting each factor to zero gives: 1. \( 4x + 3 = 0 \) → \( x = -\frac{3}{4} \) (not valid since \( x \) must be positive) 2. \( 3x - 2 = 0 \) → \( x = \frac{2}{3} \) ### Step 7: Substitute \( x \) back into the logarithm Now we substitute \( x \) back into the logarithm: \[ \log_{\frac{9}{4}}\left(\frac{2}{3}\right) \] ### Step 8: Change of base formula Using the change of base formula: \[ \log_{\frac{9}{4}}\left(\frac{2}{3}\right) = \frac{\log\left(\frac{2}{3}\right)}{\log\left(\frac{9}{4}\right)} \] ### Step 9: Simplify the logarithm We can simplify \( \log\left(\frac{9}{4}\right) \): \[ \log\left(\frac{9}{4}\right) = \log(9) - \log(4) = 2\log(3) - 2\log(2) = 2(\log(3) - \log(2)) \] Thus, we have: \[ \log_{\frac{9}{4}}\left(\frac{2}{3}\right) = \frac{\log(2) - \log(3)}{2(\log(3) - \log(2))} \] ### Step 10: Final simplification This simplifies to: \[ -\frac{1}{2} \] ### Final Answer Thus, the value of the logarithm is: \[ \boxed{-\frac{1}{2}} \]

To solve the given problem, we need to evaluate the expression: \[ \log_{\frac{9}{4}}\left(\frac{1}{2\sqrt{3}}\sqrt{6-\frac{1}{2\sqrt{3}}\sqrt{6-\frac{1}{2\sqrt{3}}\sqrt{6-\frac{1}{2\sqrt{3}}}\ldots}}\right) \] Let's denote the infinite nested expression as \( x \): ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

(sqrt(3)+1+sqrt(3)+1)/(2sqrt(2))

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

The value of 6+ log_(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))) is ________.

Evaluate : (1)/(3-sqrt(8)) -(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2).

If sqrt(3) = 1.73 find the value of : (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+1)-(sqrt(3)+1)/(sqrt(3)-1) .

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

(sqrt(3)-1)+(1)/(2)(sqrt(3)-1)^(2)+(1)/(3)(sqrt(3)-1)^(3)+….oo

Simplify : (sqrt(2))/(sqrt(6)-sqrt(2))- (sqrt(3))/(sqrt(6)+sqrt(2))

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

(4(sqrt(6) + sqrt(2)))/(sqrt(6) - sqrt(2)) - (2 + sqrt(3))/(2 - sqrt(3)) =