Home
Class 12
MATHS
Solve the equation log(x^(2)-6x+8)[log(2...

Solve the equation `log_(x^(2)-6x+8)[log_(2x^(2)-2x+8)(x^(2)+5x)]=0`

A

3

B

2

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
C

`log_(x^(2)+6x+8)(log_(2x^(2)+2x+3)(x^(2)-2x))=0`
`therefore log_(2x^(2)+2x+3)(x^(2)-2x)=1`
`therefore x^(2)-2x=2x^(2)+2x+3`
`rArr x^(2)+4x+3=0`
`rArr (x+1)(x+3)=0`
`therefore x=-1,-3`
But for `x=-3,x^(2)+6x+8lt0`
`therefore x=-1`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

Solve the equation log(3x^(2)+x-2)=3log(3x-2) .

Solve the equation: log_(2x+3)x^(2) lt log_(2x)(2x+3)

Solve the equation log_((x^(3)+6))(x^(2)-1)=log_((2x^(2)+5x))(x^(2)-1)

Solve the equationi log_((x^(2)-1))(x^(3)+6)=log_((x^(2)-1))(2x^(2)+5x)

Solve the equation log_((log_(5)x))5=2

Solve the inequation log_(2x+3)x^(2)ltlog_(2x+3)(2x+3)

Solve the equation x^(log_(x)(x+3)^(2))=16 .

Solve the equation: log_2x+log_4(x+2)=2

Solve the inequality: log_(2)(2x-3)gtlog_(2)(24-6x)

Number of real values of x satisfying the equation log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0 is equal to