Home
Class 12
MATHS
let N =(log(3) 135/log(15) 3) - (log(3) ...

let `N =(log_(3) 135/log_(15) 3) - (log_(3) 5/log_(405) 3)` , then N equals

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( N = \left( \frac{\log_{3} 135}{\log_{15} 3} \right) - \left( \frac{\log_{3} 5}{\log_{405} 3} \right) \), we can follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we can rewrite \( \log_{15} 3 \) and \( \log_{405} 3 \) as follows: \[ \log_{15} 3 = \frac{\log_{3} 3}{\log_{3} 15} = \frac{1}{\log_{3} 15} \] \[ \log_{405} 3 = \frac{\log_{3} 3}{\log_{3} 405} = \frac{1}{\log_{3} 405} \] ### Step 2: Substitute back into the expression for \( N \) Now substituting these into the expression for \( N \): \[ N = \log_{3} 135 \cdot \log_{3} 15 - \log_{3} 5 \cdot \log_{3} 405 \] ### Step 3: Expand \( \log_{3} 15 \) and \( \log_{3} 405 \) Next, we can express \( \log_{3} 15 \) and \( \log_{3} 405 \) in terms of simpler logarithms: \[ \log_{3} 15 = \log_{3} (3 \cdot 5) = \log_{3} 3 + \log_{3} 5 = 1 + \log_{3} 5 \] \[ \log_{3} 405 = \log_{3} (135 \cdot 3) = \log_{3} 135 + \log_{3} 3 = \log_{3} 135 + 1 \] ### Step 4: Substitute these back into \( N \) Substituting these into \( N \): \[ N = \log_{3} 135 \cdot (1 + \log_{3} 5) - \log_{3} 5 \cdot (\log_{3} 135 + 1) \] ### Step 5: Distribute the terms Distributing the terms gives: \[ N = \log_{3} 135 + \log_{3} 135 \cdot \log_{3} 5 - \log_{3} 5 \cdot \log_{3} 135 - \log_{3} 5 \] ### Step 6: Simplify the expression Notice that \( \log_{3} 135 \cdot \log_{3} 5 \) and \( -\log_{3} 5 \cdot \log_{3} 135 \) cancel each other out: \[ N = \log_{3} 135 - \log_{3} 5 \] ### Step 7: Use the property of logarithms Using the property of logarithms, we can combine these: \[ N = \log_{3} \left( \frac{135}{5} \right) \] ### Step 8: Simplify the fraction Calculating \( \frac{135}{5} \): \[ \frac{135}{5} = 27 \] Thus, we have: \[ N = \log_{3} 27 \] ### Step 9: Express \( 27 \) as a power of \( 3 \) Since \( 27 = 3^3 \): \[ N = \log_{3} (3^3) = 3 \cdot \log_{3} 3 \] ### Step 10: Simplify further Since \( \log_{3} 3 = 1 \): \[ N = 3 \] ### Final Answer Thus, the value of \( N \) is: \[ \boxed{3} \]

To solve the problem \( N = \left( \frac{\log_{3} 135}{\log_{15} 3} \right) - \left( \frac{\log_{3} 5}{\log_{405} 3} \right) \), we can follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we can rewrite \( \log_{15} 3 \) and \( \log_{405} 3 \) as follows: \[ \log_{15} 3 = \frac{\log_{3} 3}{\log_{3} 15} = \frac{1}{\log_{3} 15} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

Let N=((log)_3 135)/((log)_(15)3)-((log)_3 5)/((log)_(405)3)dot Then N is a natural number (b) a prime number an even integer (d) an odd integer

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

If (log_(3)x)(log_(5)3)=3 , find x.

Prove that: (log_9 11)/(log_5 3) = (log_3 11)/(log_sqrt(5) 3).

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If log_(10)5=a and log_(10)3=b ,then

Show that log_(3) 9+ log_(3) 3= log_(5) 125

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5) , then ca equals