Home
Class 12
MATHS
logaN. logbN+logcN. logbN+logaN. logcNis...

`log_aN. log_bN+log_cN. log_bN+log_aN. log_cN`is equals to

A

`(log_(a)N. log_(b)N. log_(c )N)/(log_(abc)N)`

B

`(log_(abc)N)/(log_(a)N. log_(b)N. log_(c )N)`

C

`(log_(N)abc)/(log_(N)a. log_(N)b. log_(N)c)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_a N \cdot \log_b N + \log_c N \cdot \log_b N + \log_a N \cdot \log_c N \), we will use the logarithmic base switch rule and properties of logarithms. ### Step-by-Step Solution: 1. **Apply the Logarithmic Base Switch Rule**: The logarithmic base switch rule states that: \[ \log_b N = \frac{1}{\log_N b} \] Thus, we can rewrite each logarithm in the expression: \[ \log_a N = \frac{1}{\log_N a}, \quad \log_b N = \frac{1}{\log_N b}, \quad \log_c N = \frac{1}{\log_N c} \] 2. **Rewrite the Expression**: Substituting these into the original expression gives: \[ \frac{1}{\log_N a} \cdot \frac{1}{\log_N b} + \frac{1}{\log_N c} \cdot \frac{1}{\log_N b} + \frac{1}{\log_N a} \cdot \frac{1}{\log_N c} \] 3. **Combine the Terms**: Each term can be combined over a common denominator: \[ = \frac{1}{\log_N a \cdot \log_N b} + \frac{1}{\log_N c \cdot \log_N b} + \frac{1}{\log_N a \cdot \log_N c} \] The common denominator for all three terms is \( \log_N a \cdot \log_N b \cdot \log_N c \). 4. **Finding the Numerator**: The numerator becomes: \[ \frac{\log_N c + \log_N a + \log_N b}{\log_N a \cdot \log_N b \cdot \log_N c} \] 5. **Use the Logarithmic Product Rule**: By the logarithmic product rule, we know: \[ \log_N (abc) = \log_N a + \log_N b + \log_N c \] Thus, we can rewrite the numerator: \[ = \frac{\log_N (abc)}{\log_N a \cdot \log_N b \cdot \log_N c} \] 6. **Final Expression**: Therefore, the entire expression simplifies to: \[ = \frac{\log_N (abc)}{\log_N a \cdot \log_N b \cdot \log_N c} \] ### Final Answer: \[ \log_a N \cdot \log_b N + \log_c N \cdot \log_b N + \log_a N \cdot \log_c N = \frac{\log_N (abc)}{\log_N a \cdot \log_N b \cdot \log_N c} \]

To solve the expression \( \log_a N \cdot \log_b N + \log_c N \cdot \log_b N + \log_a N \cdot \log_c N \), we will use the logarithmic base switch rule and properties of logarithms. ### Step-by-Step Solution: 1. **Apply the Logarithmic Base Switch Rule**: The logarithmic base switch rule states that: \[ \log_b N = \frac{1}{\log_N b} ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

log_4log_5 25+log_3log_3 3

If log_a(ab)=x then log_b(ab) is equals to

2log x-log(x+1)-log(x-1) is equals to

Let agt0,cgt0,b=sqrtac,a,c and acne1,Ngt0 . Prove that log_aN/log_cN=(log_aN-log_bN)/(log_bN-log_cN)

Q. If log_x a, a^(x/2) and log_b x are in G.P. then x is equal to (1) log_a(log_b a) (2) log_a(log_e a)+log_a log_b b (3) -log_a(log_a b) (4) none of these

log10 - log5

The value of log_4[|log_2{log_2(log_3)81)}] is equal to

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

1/(1+log_b a+log_b c)+1/(1+log_c a+log_c b)+1/(1+log_a b+log_a c)

If a,b,c are distinct real number different from 1 such that (log_(b)a. log_(c)a-log_(a)a) + (log_(a)b.log_(c)b-log_(b)b) +(log_(a)c.log_(b)c-log_(c)C)=0 , then abc is equal to