Home
Class 12
MATHS
Compute the following (81^(1/((log)5 9))...

Compute the following `(81^(1/((log)_5 9))+3^(3/((log)_(sqrt(6))3)))/(409)dot((sqrt(7))^(2/((log)_(25)7))-(125)^((log)_(25)6))`

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ \frac{81^{\frac{1}{\log_5 9}} + 3^{\frac{3}{\log_{\sqrt{6}} 3}}}{409 \cdot \left(\sqrt{7}^{\frac{2}{\log_{25} 7}} - 125^{\log_{25} 6}\right)} \] we will apply logarithmic properties step by step. ### Step 1: Simplify \(81^{\frac{1}{\log_5 9}}\) Using the property \(a^{\log_b c} = c^{\log_b a}\), we can rewrite \(81\) as \(9^2\): \[ 81^{\frac{1}{\log_5 9}} = (9^2)^{\frac{1}{\log_5 9}} = 9^{\frac{2}{\log_5 9}} = 9^{\log_9 5^2} = 5^2 = 25 \] **Hint:** Remember that \(a^{\log_b c} = c^{\log_b a}\) can help in simplifying expressions involving logarithms. ### Step 2: Simplify \(3^{\frac{3}{\log_{\sqrt{6}} 3}}\) Using the same property, we rewrite \(\log_{\sqrt{6}} 3\): \[ 3^{\frac{3}{\log_{\sqrt{6}} 3}} = 3^{\log_3 (\sqrt{6})^3} = (\sqrt{6})^3 = 6^{\frac{3}{2}} = 6\sqrt{6} \] **Hint:** Converting logarithmic bases can often simplify the expression. ### Step 3: Combine the results from Steps 1 and 2 Now we can combine the results: \[ 81^{\frac{1}{\log_5 9}} + 3^{\frac{3}{\log_{\sqrt{6}} 3}} = 25 + 6\sqrt{6} \] **Hint:** Always combine like terms carefully and check for simplifications. ### Step 4: Simplify the denominator \(409 \cdot \left(\sqrt{7}^{\frac{2}{\log_{25} 7}} - 125^{\log_{25} 6}\right)\) First, simplify \(\sqrt{7}^{\frac{2}{\log_{25} 7}}\): \[ \sqrt{7}^{\frac{2}{\log_{25} 7}} = 7^{\frac{1}{\log_{25} 7}} = 7^{\log_7 25} = 25 \] Now simplify \(125^{\log_{25} 6}\): \[ 125 = 5^3 \implies 125^{\log_{25} 6} = (5^3)^{\log_{25} 6} = 6^{\log_{25} 125} = 6^{\frac{3}{2}} = 6\sqrt{6} \] Now substituting back into the denominator: \[ \sqrt{7}^{\frac{2}{\log_{25} 7}} - 125^{\log_{25} 6} = 25 - 6\sqrt{6} \] **Hint:** When dealing with powers and logarithms, keep track of the bases and their relationships. ### Step 5: Substitute back into the full expression Now we can substitute everything back into the expression: \[ \frac{25 + 6\sqrt{6}}{409 \cdot (25 - 6\sqrt{6})} \] ### Step 6: Recognize the form of the expression Notice that the numerator and denominator can be expressed in the form of \(a + b\) and \(a - b\): \[ \frac{(25 + 6\sqrt{6})}{(25 - 6\sqrt{6})} = \frac{a + b}{a - b} \] This can be simplified using the identity \(\frac{a + b}{a - b} = \frac{(a^2 - b^2)}{(a^2 - b^2)}\): \[ = \frac{25^2 - (6\sqrt{6})^2}{409} \] Calculating \(25^2 = 625\) and \((6\sqrt{6})^2 = 216\): \[ = \frac{625 - 216}{409} = \frac{409}{409} = 1 \] ### Final Answer Thus, the final answer is \[ \boxed{1} \]

To solve the given expression \[ \frac{81^{\frac{1}{\log_5 9}} + 3^{\frac{3}{\log_{\sqrt{6}} 3}}}{409 \cdot \left(\sqrt{7}^{\frac{2}{\log_{25} 7}} - 125^{\log_{25} 6}\right)} \] we will apply logarithmic properties step by step. ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

Let x=(((81^(1/( (log_(5)9))+3^(3/( log_(sqrt6)3)))/(409)).( (sqrt7)^((2)/(log_(25)7))-125^( log_(25)6))) then value of log_(2)x is equal to :

Compute the following 56+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1//2)1/(10+2sqrt(21))

Prove that: (log_9 11)/(log_5 3) = (log_3 11)/(log_sqrt(5) 3).

Which of the following when simplified reduces to unity? (log)_(3/2)(log)_4(log)_(sqrt(3))81 (log)_2 6+(log)_2sqrt(2/3) -1/6(log)_(sqrt(3/2))((64)/(27)) (d) (log)_(7/2)(1+2-3-:6)

The value of 5^((log)_(1/5)(1/2))+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1/2)1/(10+2sqrt(21)) is.........

The value of 5^((log)_(1/5)(1/2))+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1/2)1/(10+2sqrt(21)) is.........

Solve 3^((log_(9)x)^(2)-9/2log_(9)x+5)= 3 sqrt3.

Find the value of 81^((1//log_5 3))+(27^(log_9 36)) + 3^((4/(log_7 9))

The value of ((log_(2)9)^(2))^(1/(log_(2)(log_(2)9)))xx(sqrt7)^(1/(log_(4)7)) is ________.

Solve: 4(log)_(x/2)(sqrt(x))+2(log)_(4x)(x^2)=3(log)_(2x)(x^3)dot