Home
Class 12
MATHS
The value of 6^(log10 40)*5^(log10 36) i...

The value of `6^(log_10 40)*5^(log_10 36)` is

A

200

B

216

C

432

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 6^{\log_{10} 40} \cdot 5^{\log_{10} 36} \), we can follow these steps: ### Step 1: Set up the equation Let \( x = 6^{\log_{10} 40} \cdot 5^{\log_{10} 36} \). ### Step 2: Take the logarithm of both sides Taking the logarithm (base 10) of both sides gives us: \[ \log_{10} x = \log_{10} (6^{\log_{10} 40}) + \log_{10} (5^{\log_{10} 36}) \] ### Step 3: Use the power rule of logarithms Using the power rule of logarithms, we can simplify: \[ \log_{10} x = \log_{10} 40 \cdot \log_{10} 6 + \log_{10} 36 \cdot \log_{10} 5 \] ### Step 4: Rewrite the logarithms of numbers We can rewrite \( \log_{10} 40 \) and \( \log_{10} 36 \): - \( \log_{10} 40 = \log_{10} (4 \cdot 10) = \log_{10} 4 + \log_{10} 10 = \log_{10} 4 + 1 \) - \( \log_{10} 36 = \log_{10} (6^2) = 2 \log_{10} 6 \) Substituting these back into the equation gives: \[ \log_{10} x = (\log_{10} 4 + 1) \cdot \log_{10} 6 + 2 \log_{10} 6 \cdot \log_{10} 5 \] ### Step 5: Expand and simplify Expanding the first term: \[ \log_{10} x = \log_{10} 4 \cdot \log_{10} 6 + \log_{10} 6 + 2 \log_{10} 6 \cdot \log_{10} 5 \] Combining like terms: \[ \log_{10} x = \log_{10} 6 \cdot (\log_{10} 4 + 1 + 2 \log_{10} 5) \] ### Step 6: Further simplify Recognizing that \( \log_{10} 4 = 2 \log_{10} 2 \): \[ \log_{10} x = \log_{10} 6 \cdot (2 \log_{10} 2 + 1 + 2 \log_{10} 5) \] ### Step 7: Combine logarithmic terms We can express \( 2 \log_{10} 2 + 2 \log_{10} 5 \) as \( 2(\log_{10} 2 + \log_{10} 5) = 2 \log_{10} 10 = 2 \): \[ \log_{10} x = \log_{10} 6 \cdot (2 + 1) = 3 \log_{10} 6 \] ### Step 8: Exponentiate to solve for \( x \) Exponentiating both sides gives: \[ x = 6^3 \] Calculating \( 6^3 \): \[ x = 216 \] ### Final Answer Thus, the value of \( 6^{\log_{10} 40} \cdot 5^{\log_{10} 36} \) is \( 216 \). ---

To solve the problem \( 6^{\log_{10} 40} \cdot 5^{\log_{10} 36} \), we can follow these steps: ### Step 1: Set up the equation Let \( x = 6^{\log_{10} 40} \cdot 5^{\log_{10} 36} \). ### Step 2: Take the logarithm of both sides Taking the logarithm (base 10) of both sides gives us: \[ ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

The number N=6^(log_(10)40). 5^(log_(10)36) is a natural number ,Then sum of digits of N is :

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

Find the value of 81^((1//log_5 3))+(27^(log_9 36)) + 3^((4/(log_7 9))

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

the value of e^(log_(10)tan1^@+log_(10)tan2^@+log_(10)tan3^@....+log_(10)tan89^@

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

log4^2_10 + log4_10

The value of N=((log)_5 250)/((log)_(50)5)-((log)_5 10)/((log)_(1250)5) is...........