Home
Class 12
MATHS
Solve : log(3)x . log(4)x.log(5)x=log(3)...

Solve : `log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \log_{3} x \cdot \log_{4} x \cdot \log_{5} x = \log_{3} x \cdot \log_{4} x + \log_{4} x \cdot \log_{5} x + \log_{5} x \cdot \log_{3} x, \] we can follow these steps: ### Step 1: Let \( \log_{3} x = p \), \( \log_{4} x = q \), and \( \log_{5} x = r \). This substitution simplifies our equation. ### Step 2: Rewrite the equation using \( p, q, r \). The equation now becomes: \[ pqr = pq + qr + rp. \] ### Step 3: Rearrange the equation. We can rearrange this to: \[ pqr - (pq + qr + rp) = 0. \] ### Step 4: Factor the equation. This can be factored as: \[ pqr - pq - qr - rp = 0 \implies \frac{1}{pqr} = \frac{1}{pq} + \frac{1}{qr} + \frac{1}{rp}. \] ### Step 5: Take the common denominator. Taking the common denominator on the right-hand side gives us: \[ \frac{1}{pqr} = \frac{r}{pqr} + \frac{p}{pqr} + \frac{q}{pqr}. \] ### Step 6: Cancel \( \frac{1}{pqr} \) from both sides. This simplifies to: \[ 1 = p + q + r. \] ### Step 7: Substitute back the logarithmic expressions. Now substituting back the values of \( p, q, r \): \[ \log_{3} x + \log_{4} x + \log_{5} x = 1. \] ### Step 8: Combine the logarithms. Using the property of logarithms, we can combine these: \[ \log_{3}(x) + \log_{4}(x) + \log_{5}(x) = \log_{3}(x) + \log_{3}(x) + \log_{3}(x) \cdot \frac{\log_{4}(x)}{\log_{3}(4)} + \log_{3}(x) \cdot \frac{\log_{5}(x)}{\log_{3}(5)} = 1. \] ### Step 9: Convert to a single logarithm. This implies: \[ \log_{3}(x) + \log_{4}(x) + \log_{5}(x) = \log_{3}(x) + \log_{3}(x) + \log_{3}(x) \cdot \frac{\log_{4}(x)}{\log_{3}(4)} + \log_{3}(x) \cdot \frac{\log_{5}(x)}{\log_{3}(5)} = 1. \] ### Step 10: Solve for x. This can be rewritten as: \[ \log_{3}(x) + \log_{4}(x) + \log_{5}(x) = \log_{3}(60). \] Thus, we have: \[ \log_{3}(60) = 1 \implies x = 60. \] ### Final Answer: Therefore, the solution is \[ \boxed{60}. \] ---

To solve the equation \[ \log_{3} x \cdot \log_{4} x \cdot \log_{5} x = \log_{3} x \cdot \log_{4} x + \log_{4} x \cdot \log_{5} x + \log_{5} x \cdot \log_{3} x, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

Solve : 3log_x(4)+ 2log_(4x)4+3log_(16x)4=0

Find the square of the sum of the roots of the equation log_3x*log_4x*log_5x=log_3x*log_4x+log_4x*log_5x+log_3x*log_5x

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Solve 2 log_(3) x - 4 log_(x) 27 le 5 .

Solve : log_(2)(4-x)=4-log_(2)(-2-x)

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Solve log_(4)(x-1)= log_(2) (x-3) .

Solve : log_4(log_3(log_2x))=0