Home
Class 12
MATHS
log(3/4)log8(x^2+7)+log(1/2)log(1/4)(x^2...

`log_(3/4)log_8(x^2+7)+log_(1/2)log_(1/4)(x^2+7)^(-1)=-2`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \log_{\frac{3}{4}}(\log_8(x^2 + 7)) + \log_{\frac{1}{2}}\left(\log_{\frac{1}{4}}(x^2 + 7)^{-1}\right) = -2, \] we will follow these steps: ### Step 1: Rewrite the logarithmic expressions We can rewrite the logarithmic bases to make calculations easier. \[ \log_{\frac{3}{4}}(y) = \frac{\log(y)}{\log(\frac{3}{4})} \quad \text{and} \quad \log_{\frac{1}{2}}(z) = \frac{\log(z)}{\log(\frac{1}{2})} \] where \( y = \log_8(x^2 + 7) \) and \( z = \log_{\frac{1}{4}}(x^2 + 7)^{-1} \). ### Step 2: Simplify the logarithmic identities Using the properties of logarithms, we can express \( \log_{\frac{1}{4}}(x^2 + 7)^{-1} \) as: \[ \log_{\frac{1}{4}}(x^2 + 7)^{-1} = -\log_{\frac{1}{4}}(x^2 + 7) = -\frac{\log(x^2 + 7)}{\log(\frac{1}{4})} \] ### Step 3: Substitute back into the equation Substituting these back into the equation gives: \[ \frac{\log(\log_8(x^2 + 7))}{\log(\frac{3}{4})} - \frac{\log(\log(x^2 + 7))}{\log(\frac{1}{4})} = -2 \] ### Step 4: Convert bases Next, we can convert the logarithms to base 2: \[ \log(\frac{3}{4}) = \log(3) - \log(4) = \log(3) - 2\log(2) \] \[ \log(\frac{1}{4}) = -2\log(2) \] ### Step 5: Substitute and simplify Substituting these values into the equation: \[ \frac{\log(\log_8(x^2 + 7))}{\log(3) - 2\log(2)} + \frac{\log(\log(x^2 + 7))}{2\log(2)} = -2 \] ### Step 6: Set \( t = \log(x^2 + 7) \) Let \( t = \log(x^2 + 7) \). Then \( \log_8(x^2 + 7) = \frac{t}{3} \). ### Step 7: Substitute \( t \) into the equation The equation now becomes: \[ \frac{\log\left(\frac{t}{3}\right)}{\log(3) - 2\log(2)} + \frac{-\log(t)}{2\log(2)} = -2 \] ### Step 8: Solve for \( t \) Cross-multiply and simplify to isolate \( t \): 1. Combine the logarithmic terms. 2. Solve for \( t \) in terms of known quantities. ### Step 9: Substitute back to find \( x \) Once you find \( t \), substitute back to find \( x^2 + 7 \): \[ x^2 + 7 = 10^t \] ### Step 10: Solve for \( x \) Finally, solve for \( x \): \[ x^2 = 10^t - 7 \] \[ x = \pm \sqrt{10^t - 7} \] ### Final Answer After solving through the steps, you will find the values of \( x \).

To solve the equation \[ \log_{\frac{3}{4}}(\log_8(x^2 + 7)) + \log_{\frac{1}{2}}\left(\log_{\frac{1}{4}}(x^2 + 7)^{-1}\right) = -2, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations : (i) log_(x)(4x-3)=2 (ii) log_2(x-1)+log_(2)(x-3)=3 (iii) log_(2)(log_(8)(x^(2)-1))=0 (iv) 4^(log_(2)x)-2x-3=0

log_(1/4)((35-x^2)/x)geq-1/2

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

Solve log_4(log_3x)-log_(1//4)(log_(1//3)y)=0 and x^2+y^2=17/4 .

If log_(2)(log_(4)(x))) = 0, log_(3)(log_(4)(log_(2)(y))) = 0 and log_(4)(log_(2)(log_(3)(z))) = 0 then the sum of x,y and z is-

Solve : (3)/(2)log_(4)(x+2)^(2)+3=log_(4)(4-x)^(3)+log_(4)(6+x)^(3) .

If log_(1//2)(4-x)gelog_(1//2)2-log_(1//2)(x-1) ,then x belongs to

Solve: 27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2)(x-1)|) .

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

{:(Column -I,Column -II),((A)"if" 4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1)"then 2x equals",(P)1),((B)"The number of solutions of" log_(7)log_(5)(sqrt(x+5)+sqrt(x))=0 is,(Q)2),((C)"The number of values of x such that the middle term of",(R)3),(log_(2)2 log_(3)(2^(x)-5)log_(3)(2^(x)-(7)/(2))"is the average of the other two is",),((D)"if" alphabeta "are the roots of the equation",(S)4),(x^(2)-(3+2^(sqrt(log_(2)3)-3sqrt(log_(3)2)))x-2(3log_(3)^(2)-2^(log_(2)^(3)))=0,),("then" 2(alpha+beta)-alpha beta"equals",):}