Home
Class 12
MATHS
The value of x satisfying 5^logx-3^(lo...

The value of x satisfying `5^logx-3^(logx-1)=3^(logx+1)-5^(logx - 1)` , where the base of logarithm is 10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 5^{\log x} - 3^{\log x - 1} = 3^{\log x + 1} - 5^{\log x - 1} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 5^{\log x} - 3^{\log x - 1} = 3^{\log x + 1} - 5^{\log x - 1} \] ### Step 2: Simplify the terms We can rewrite \( 3^{\log x - 1} \) and \( 3^{\log x + 1} \): \[ 3^{\log x - 1} = \frac{3^{\log x}}{3} \quad \text{and} \quad 3^{\log x + 1} = 3 \cdot 3^{\log x} \] Substituting these into the equation gives: \[ 5^{\log x} - \frac{3^{\log x}}{3} = 3 \cdot 3^{\log x} - 5^{\log x - 1} \] ### Step 3: Rewrite \( 5^{\log x - 1} \) Similarly, we can rewrite \( 5^{\log x - 1} \): \[ 5^{\log x - 1} = \frac{5^{\log x}}{5} \] Substituting this into the equation gives: \[ 5^{\log x} - \frac{3^{\log x}}{3} = 3 \cdot 3^{\log x} - \frac{5^{\log x}}{5} \] ### Step 4: Multiply through by 15 to eliminate fractions To eliminate the fractions, multiply the entire equation by 15: \[ 15 \cdot 5^{\log x} - 5 \cdot 3^{\log x} = 45 \cdot 3^{\log x} - 3 \cdot 5^{\log x} \] ### Step 5: Combine like terms Rearranging the equation gives: \[ 15 \cdot 5^{\log x} + 3 \cdot 5^{\log x} = 45 \cdot 3^{\log x} + 5 \cdot 3^{\log x} \] This simplifies to: \[ 18 \cdot 5^{\log x} = 50 \cdot 3^{\log x} \] ### Step 6: Divide both sides by \( 3^{\log x} \) Dividing both sides by \( 3^{\log x} \) gives: \[ \frac{18 \cdot 5^{\log x}}{3^{\log x}} = 50 \] This can be rewritten using the properties of logarithms: \[ 18 \cdot \left(\frac{5}{3}\right)^{\log x} = 50 \] ### Step 7: Isolate \( \left(\frac{5}{3}\right)^{\log x} \) Dividing both sides by 18 gives: \[ \left(\frac{5}{3}\right)^{\log x} = \frac{50}{18} = \frac{25}{9} \] ### Step 8: Take logarithm on both sides Taking logarithm base 10 on both sides: \[ \log x \cdot \log \left(\frac{5}{3}\right) = \log \left(\frac{25}{9}\right) \] ### Step 9: Solve for \( \log x \) Now, we can isolate \( \log x \): \[ \log x = \frac{\log \left(\frac{25}{9}\right)}{\log \left(\frac{5}{3}\right)} \] ### Step 10: Calculate \( x \) Using properties of logarithms: \[ \log \left(\frac{25}{9}\right) = \log 25 - \log 9 = 2 \log 5 - 2 \log 3 \] \[ \log \left(\frac{5}{3}\right) = \log 5 - \log 3 \] Thus: \[ \log x = \frac{2 \log 5 - 2 \log 3}{\log 5 - \log 3} = 2 \] So, \( x = 10^2 = 100 \). ### Final Answer The value of \( x \) is: \[ \boxed{100} \]

To solve the equation \( 5^{\log x} - 3^{\log x - 1} = 3^{\log x + 1} - 5^{\log x - 1} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 5^{\log x} - 3^{\log x - 1} = 3^{\log x + 1} - 5^{\log x - 1} \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

lim_(x->1) (log_3 3x)^(log_x 3)=

lim_(x->1) (log_3 3x)^(log_x 3)=

The value of inte^(5logx)dx is

int(logx/(1+logx)^2)dx

Integrate the functions (e^(5logx)-e^(4logx))/(e^(2logx)-e^(2logx))

The value of lim_(xrarre) (logx-1)/(x-e) , is

intdx/(x[(logx)^2+4logx-1])

x(dy)/(dx)=y(logy-logx+1)