Home
Class 12
MATHS
Solve: logaxloga(xyz)=48; logayloga(xy...

Solve: `log_axlog_a(xyz)=48`; `log_aylog_a(xyz)=12`; `log_azlog_a(xyz)=84`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations given in the problem, we will follow these steps: ### Step 1: Write down the given equations We have the following equations: 1. \( \log_a x \cdot \log_a (xyz) = 48 \) 2. \( \log_a y \cdot \log_a (xyz) = 12 \) 3. \( \log_a z \cdot \log_a (xyz) = 84 \) ### Step 2: Introduce a new variable Let \( k = \log_a (xyz) \). Then we can rewrite the equations as: 1. \( \log_a x \cdot k = 48 \) (Equation 1) 2. \( \log_a y \cdot k = 12 \) (Equation 2) 3. \( \log_a z \cdot k = 84 \) (Equation 3) ### Step 3: Solve for \( \log_a x \), \( \log_a y \), and \( \log_a z \) From Equation 1: \[ \log_a x = \frac{48}{k} \] From Equation 2: \[ \log_a y = \frac{12}{k} \] From Equation 3: \[ \log_a z = \frac{84}{k} \] ### Step 4: Add the logarithmic equations Now, we can add the three logarithmic values: \[ \log_a x + \log_a y + \log_a z = \frac{48}{k} + \frac{12}{k} + \frac{84}{k} \] This simplifies to: \[ \log_a (xyz) = \frac{48 + 12 + 84}{k} = \frac{144}{k} \] ### Step 5: Set up the equation Since we know that \( \log_a (xyz) = k \), we can equate: \[ k = \frac{144}{k} \] ### Step 6: Solve for \( k \) Multiplying both sides by \( k \) gives: \[ k^2 = 144 \] Taking the square root of both sides, we find: \[ k = 12 \quad \text{(since logarithms are positive)} \] ### Step 7: Substitute back to find \( \log_a x \), \( \log_a y \), and \( \log_a z \) Now substitute \( k = 12 \) back into the equations: 1. \( \log_a x = \frac{48}{12} = 4 \) 2. \( \log_a y = \frac{12}{12} = 1 \) 3. \( \log_a z = \frac{84}{12} = 7 \) ### Step 8: Convert logarithmic values to exponential form Now we can convert these logarithmic values back to their exponential forms: 1. \( x = a^4 \) 2. \( y = a^1 = a \) 3. \( z = a^7 \) ### Step 9: Find \( x - 5z \) Now we need to find \( x - 5z \): \[ x - 5z = a^4 - 5(a^7) = a^4 - 5a^7 \] ### Final Result Thus, the final expression for \( x - 5z \) is: \[ x - 5z = a^4 - 5a^7 \]

To solve the equations given in the problem, we will follow these steps: ### Step 1: Write down the given equations We have the following equations: 1. \( \log_a x \cdot \log_a (xyz) = 48 \) 2. \( \log_a y \cdot \log_a (xyz) = 12 \) 3. \( \log_a z \cdot \log_a (xyz) = 84 \) ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

Solve the system of equations: (log)_a x(log)_a(x y z)=48(log)_a y log_a(x y z)=12 ,\ a >0,\ a!=1(log)_a z log_a(x y z)=84\

Solve : log_4(log_3(log_2x))=0

Solve log(-x)=2log(x+1)dot

Solve log(-x)=2log(x+1)dot

Solve (log)_x2(log)_(2x)2=(log)_(4x)2.

Solve : 6((log)_x2-(log)_4x)+7=0.

Solve : log_(x^(2)16+log_(2x)64=3 .

Solve : 3log_x(4)+ 2log_(4x)4+3log_(16x)4=0

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .