Home
Class 12
MATHS
98. The value of x satisfying the equati...

98. The value of x satisfying the equation `((sqrtpi)^(log_pi(x))).((sqrtpi)^(log_(pi^2)(x))).((sqrtpi).^(log_(pi^4)(x))).((sqrtpi)^(log_(pi^8)(x)))...oo=3` is equal to

A

`sqrt(pi)`

B

`pi`

C

3

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \left(\sqrt{\pi}\right)^{\log_{\pi}(x)} \cdot \left(\sqrt{\pi}\right)^{\log_{\pi^2}(x)} \cdot \left(\sqrt{\pi}\right)^{\log_{\pi^4}(x)} \cdot \left(\sqrt{\pi}\right)^{\log_{\pi^8}(x)} \cdots = 3, \] we will follow these steps: ### Step 1: Rewrite each term We can rewrite each term in the product. The first term is: \[ \left(\sqrt{\pi}\right)^{\log_{\pi}(x)} = \pi^{\frac{1}{2} \log_{\pi}(x)}. \] Using the property of logarithms, we can express this as: \[ \pi^{\frac{1}{2} \log_{\pi}(x)} = x^{\frac{1}{2}}. \] ### Step 2: Continue rewriting the terms Now, consider the second term: \[ \left(\sqrt{\pi}\right)^{\log_{\pi^2}(x)} = \pi^{\frac{1}{2} \log_{\pi^2}(x)}. \] Using the change of base formula for logarithms, we have: \[ \log_{\pi^2}(x) = \frac{1}{2} \log_{\pi}(x), \] so \[ \left(\sqrt{\pi}\right)^{\log_{\pi^2}(x)} = \pi^{\frac{1}{2} \cdot \frac{1}{2} \log_{\pi}(x)} = \pi^{\frac{1}{4} \log_{\pi}(x)} = x^{\frac{1}{4}}. \] ### Step 3: Generalize the pattern Continuing this process, we can see that: \[ \left(\sqrt{\pi}\right)^{\log_{\pi^4}(x)} = x^{\frac{1}{8}}, \] \[ \left(\sqrt{\pi}\right)^{\log_{\pi^8}(x)} = x^{\frac{1}{16}}, \] and so on. ### Step 4: Write the infinite product Thus, the entire expression can be written as: \[ x^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots}. \] ### Step 5: Calculate the sum of the series The series \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots\) is a geometric series with the first term \(a = \frac{1}{2}\) and common ratio \(r = \frac{1}{2}\). The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1. \] ### Step 6: Set up the equation Now we have: \[ x^1 = 3. \] ### Step 7: Solve for \(x\) Thus, \[ x = 3. \] ### Final Answer The value of \(x\) satisfying the equation is \[ \boxed{3}. \]

To solve the equation \[ \left(\sqrt{\pi}\right)^{\log_{\pi}(x)} \cdot \left(\sqrt{\pi}\right)^{\log_{\pi^2}(x)} \cdot \left(\sqrt{\pi}\right)^{\log_{\pi^4}(x)} \cdot \left(\sqrt{\pi}\right)^{\log_{\pi^8}(x)} \cdots = 3, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

The value 'x' satisfying the equation, 4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83)is ____

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

The product of all values of x satisfying the equations log_(3)a-log_(x)a=log_(x//3)a is :

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are

The possible value(s) of x, satisfying the equation log_(2)(x^(2)-x)log_(2) ((x-1)/(x)) + (log_(2)x)^(2) = 4 , is (are)

Number of real values of x satisfying the equation log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0 is equal to

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Number of integral value (s) of 'x' satisfying the equation log_(1/5)(sec(pi/3)x+5)=log_5(1/(16-x^2))+tan ((13pi)/4) is

The smallest positive x satisfying the equation (log)_(cosx)sinx+(log)_(sinx)cosx=2 is pi/2 (b) pi/3 (c) pi/4 (d) pi/6

The smallest positive x satisfying the equation (log)_(cosx)sinx+(log)_(sinx)cosx=2 is pi/2 (b) pi/3 (c) pi/4 (d) pi/6