Home
Class 12
MATHS
If a gt 1, x gt 0 and 2^(log(a)(2x))=5^(...

If `a gt 1, x gt 0` and `2^(log_(a)(2x))=5^(log_(a)(5x))`, then x is equal to

A

`(1)/(10)`

B

`(1)/(5)`

C

`(1)/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2^{\log_a(2x)} = 5^{\log_a(5x)} \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the logarithm of both sides with base \( a \): \[ \log_a(2^{\log_a(2x)}) = \log_a(5^{\log_a(5x)}) \] ### Step 2: Apply the power rule of logarithms Using the power rule of logarithms, we can bring down the exponents: \[ \log_a(2x) \cdot \log_a(2) = \log_a(5x) \cdot \log_a(5) \] ### Step 3: Rewrite the logarithms We can rewrite \( \log_a(2x) \) and \( \log_a(5x) \): \[ \log_a(2x) = \log_a(2) + \log_a(x) \quad \text{and} \quad \log_a(5x) = \log_a(5) + \log_a(x) \] Substituting these into the equation gives: \[ (\log_a(2) + \log_a(x)) \cdot \log_a(2) = (\log_a(5) + \log_a(x)) \cdot \log_a(5) \] ### Step 4: Expand both sides Expanding both sides results in: \[ \log_a(2)^2 + \log_a(2) \cdot \log_a(x) = \log_a(5)^2 + \log_a(5) \cdot \log_a(x) \] ### Step 5: Rearrange the equation Rearranging the equation to isolate terms involving \( \log_a(x) \): \[ \log_a(2)^2 - \log_a(5)^2 = \log_a(5) \cdot \log_a(x) - \log_a(2) \cdot \log_a(x) \] Factoring out \( \log_a(x) \) on the right side gives: \[ \log_a(2)^2 - \log_a(5)^2 = \log_a(x)(\log_a(5) - \log_a(2)) \] ### Step 6: Solve for \( \log_a(x) \) Using the difference of squares on the left side: \[ (\log_a(2) - \log_a(5))(\log_a(2) + \log_a(5)) = \log_a(x)(\log_a(5) - \log_a(2)) \] Since \( \log_a(5) - \log_a(2) \) is common on both sides, we can simplify: \[ \log_a(x) = \frac{\log_a(2)^2 - \log_a(5)^2}{\log_a(5) - \log_a(2)} \] ### Step 7: Simplify using the difference of squares Using the identity \( a^2 - b^2 = (a - b)(a + b) \): \[ \log_a(x) = \log_a(2) + \log_a(5) \] This simplifies to: \[ \log_a(x) = \log_a(10) \] ### Step 8: Exponentiate to solve for \( x \) Exponentiating both sides gives: \[ x = 10 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{10} \]

To solve the equation \( 2^{\log_a(2x)} = 5^{\log_a(5x)} \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the logarithm of both sides with base \( a \): \[ \log_a(2^{\log_a(2x)}) = \log_a(5^{\log_a(5x)}) \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

If b gt 1, x gt 0 and (2x)^(log_(b) 2)-(3x)^(log_(b) 3)=0 , then x is

If y=log_(x^(2)+4)(7x^(2)-5x+1) , then (dy)/(dx) is equal to

The solution of the equation 5^(log_(a)x)+5x^(log_(a)5)=3, a gt0 , is

If "log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x , then x equals to

log_X(X+2)+log_(X+2)X=5/2

(a^(log_b x))^2-5x^(log_b a)+6=0

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-7/2) are in A.P., then x is equal to

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

log_(x-1)x*log_(x-2)(x-1)*...*log_(x-12)(x-11) = 2 ,x is equal to

The set of real values of x satisfying the inequality log_(x+1/x)(log_2((x-1)/(x+2))) gt 0, is equal to