Home
Class 12
MATHS
Solve log(6) 9-log(9) 27 + log(8)x = log...

Solve `log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4`..

A

`1//2`

B

`1//4`

C

`1//8`

D

`1//16`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{6} 9 - \log_{9} 27 + \log_{8} x = \log_{64} x - \log_{6} 4 \), we will follow these steps: ### Step 1: Rewrite the logarithmic expressions We can use the change of base formula and properties of logarithms to rewrite the terms in the equation. \[ \log_{9} 27 = \frac{\log 27}{\log 9} = \frac{\log 3^3}{\log 3^2} = \frac{3 \log 3}{2 \log 3} = \frac{3}{2} \] Thus, we can rewrite the equation as: \[ \log_{6} 9 - \frac{3}{2} + \log_{8} x = \log_{64} x - \log_{6} 4 \] ### Step 2: Move all logarithmic terms to one side Rearranging the equation gives: \[ \log_{6} 9 + \log_{6} 4 - \frac{3}{2} = \log_{64} x - \log_{8} x \] ### Step 3: Use properties of logarithms We can combine the logarithms on the left side: \[ \log_{6} (9 \cdot 4) - \frac{3}{2} = \log_{64} x - \log_{8} x \] Now, calculate \( 9 \cdot 4 = 36 \): \[ \log_{6} 36 - \frac{3}{2} = \log_{64} x - \log_{8} x \] ### Step 4: Rewrite the right side Using the change of base formula again, we can express \( \log_{64} x - \log_{8} x \): \[ \log_{64} x = \frac{\log x}{\log 64} \quad \text{and} \quad \log_{8} x = \frac{\log x}{\log 8} \] Thus, we have: \[ \log_{64} x - \log_{8} x = \frac{\log x}{\log 64} - \frac{\log x}{\log 8} \] ### Step 5: Combine the right side Factoring out \( \log x \): \[ \log x \left( \frac{1}{\log 64} - \frac{1}{\log 8} \right) \] ### Step 6: Solve for \( x \) Now we equate both sides: \[ \log_{6} 36 - \frac{3}{2} = \log x \left( \frac{1}{\log 64} - \frac{1}{\log 8} \right) \] Calculating \( \log_{6} 36 \): \[ \log_{6} 36 = \log_{6} (6^2) = 2 \] So we have: \[ 2 - \frac{3}{2} = \log x \left( \frac{1}{\log 64} - \frac{1}{\log 8} \right) \] This simplifies to: \[ \frac{1}{2} = \log x \left( \frac{1}{\log 64} - \frac{1}{\log 8} \right) \] ### Step 7: Isolate \( \log x \) Now we can isolate \( \log x \): \[ \log x = \frac{\frac{1}{2}}{\frac{1}{\log 64} - \frac{1}{\log 8}} \] ### Step 8: Solve for \( x \) Finally, exponentiate both sides to solve for \( x \): \[ x = 10^{\log x} \] ### Final Answer After performing the calculations, we find: \[ x = \frac{1}{8} \]

To solve the equation \( \log_{6} 9 - \log_{9} 27 + \log_{8} x = \log_{64} x - \log_{6} 4 \), we will follow these steps: ### Step 1: Rewrite the logarithmic expressions We can use the change of base formula and properties of logarithms to rewrite the terms in the equation. \[ \log_{9} 27 = \frac{\log 27}{\log 9} = \frac{\log 3^3}{\log 3^2} = \frac{3 \log 3}{2 \log 3} = \frac{3}{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve 2 log_(3) x - 4 log_(x) 27 le 5 .

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

Evaluate: log_(9)27 - log_(27)9

Evaluate: log_(9)27 - log_(27)9

Evaluate : (i) log_(125) 625 - log_(16) 64 (ii) log_(16) 32 - log_(25) 125 + log_(9) 27 .

Solve log_4 (8)+log_4 (x+3)-log_4 (x-1)=2

If "log"_(2) a + "log"_(4) b + "log"_(4) c = 2 "log"_(9) a + "log"_(3) b + "log"_(9) c = 2 "log"_(16) a + "log"_(16) b + "log"_(4) c =2 , then

Solve log_(4)(x-1)= log_(2) (x-3) .