Home
Class 12
MATHS
If log(1//2)(4-x)gelog(1//2)2-log(1//2)...

If ` log_(1//2)(4-x)gelog_(1//2)2-log_(1//2)(x-1)`,then x belongs to

A

(1,2]

B

[1,3]

C

[3,4)

D

[2,3]

Text Solution

Verified by Experts

The correct Answer is:
A, C

We have `log_(1//2)(4-x)ge log_(1//2)2-log_(1//2)(x-1)`
It is defined if `4-x gt 0` and `x- 1 gt 0` or `1 lt x lt 4` …..(i)
`rArr log_(1//2)(4-x)(x-1)ge log_(1//2)2`
`rArr (4-x)(x-1)ge 2`
`rArr x^(2)-5x + 6 ge 0`
`rArr (x-3)(x-2)ge 0`
`rArr x ge 3` or `x le 2` ......(ii)
From (i) and (ii), we get `x in (1,2] uu [3,4)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

If log_(0.04) (x-1)>=log_(0.2) (x-1) then x belongs to the interval

log_(1/4)((35-x^2)/x)geq-1/2

If log_(3)x-(log_(3)x)^(2)le(3)/(2)log_((1//2sqrt(2)))4 , then x can belong to (a) (-oo,1//3) (b) (9,oo) (c) (1,6) (d) (-oo,0)

Solve log_(2)(2sqrt(17-2x))=1 - log_(1//2)(x-1) .

log_(3/4)log_8(x^2+7)+log_(1/2)log_(1/4)(x^2+7)^(-1)=-2 .

log_(x-1)x*log_(x-2)(x-1)*...*log_(x-12)(x-11) = 2 ,x is equal to

2log x-log(x+1)-log(x-1) is equals to

Solve log_(2)(x-1) gt 4 .

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4