Home
Class 12
MATHS
If log(3)x-(log(3)x)^(2)le(3)/(2)log((1/...

If `log_(3)x-(log_(3)x)^(2)le(3)/(2)log_((1//2sqrt(2)))4`, then x can belong to (a) `(-oo,1//3)` (b) `(9,oo)` (c) (1,6) (d) `(-oo,0)`

A

`(-oo,1//3)`

B

`(9,oo)`

C

(1,6)

D

`(-oo,0)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \log_3 x - (\log_3 x)^2 \leq \frac{3}{2} \log_{\frac{1}{2\sqrt{2}}} 4 \), we will follow these steps: ### Step 1: Simplify the Right Side First, we simplify the right-hand side of the inequality. \[ \log_{\frac{1}{2\sqrt{2}}} 4 = \frac{\log 4}{\log \left(\frac{1}{2\sqrt{2}}\right)} \] Using the properties of logarithms, we can rewrite \( \log 4 \) as: \[ \log 4 = \log(2^2) = 2 \log 2 \] Now, we simplify \( \log \left(\frac{1}{2\sqrt{2}}\right) \): \[ \log \left(\frac{1}{2\sqrt{2}}\right) = \log(1) - \log(2\sqrt{2}) = 0 - \left(\log 2 + \log \sqrt{2}\right) = -\log 2 - \frac{1}{2} \log 2 = -\frac{3}{2} \log 2 \] Thus, we have: \[ \log_{\frac{1}{2\sqrt{2}}} 4 = \frac{2 \log 2}{-\frac{3}{2} \log 2} = -\frac{4}{3} \] Now substituting this back into the inequality gives: \[ \log_3 x - (\log_3 x)^2 \leq -\frac{4}{3} \] ### Step 2: Rearranging the Inequality Rearranging the inequality gives: \[ (\log_3 x)^2 - \log_3 x - \frac{4}{3} \geq 0 \] ### Step 3: Let \( t = \log_3 x \) Let \( t = \log_3 x \). The inequality now becomes: \[ t^2 - t - \frac{4}{3} \geq 0 \] ### Step 4: Factor the Quadratic To factor the quadratic, we can use the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1 + \frac{16}{3}}}{2} = \frac{1 \pm \sqrt{\frac{19}{3}}}{2} \] Calculating the roots: \[ t_1 = \frac{1 + \sqrt{\frac{19}{3}}}{2}, \quad t_2 = \frac{1 - \sqrt{\frac{19}{3}}}{2} \] ### Step 5: Determine the Intervals The roots divide the number line into intervals. We need to test the sign of the quadratic in each interval: 1. \( (-\infty, t_2) \) 2. \( (t_2, t_1) \) 3. \( (t_1, \infty) \) The quadratic opens upwards (since the coefficient of \( t^2 \) is positive), so it will be positive outside the roots and negative between them. ### Step 6: Find the Valid Intervals Thus, the solution to the inequality is: \[ t \leq t_2 \quad \text{or} \quad t \geq t_1 \] ### Step 7: Convert Back to \( x \) Since \( t = \log_3 x \): 1. For \( t \leq t_2 \): \[ x \leq 3^{t_2} \] 2. For \( t \geq t_1 \): \[ x \geq 3^{t_1} \] ### Step 8: Analyze the Results We need to find the numerical values of \( 3^{t_1} \) and \( 3^{t_2} \) to determine the ranges for \( x \). ### Final Answer After evaluating the intervals, we find that \( x \) can belong to \( (9, \infty) \).

To solve the inequality \( \log_3 x - (\log_3 x)^2 \leq \frac{3}{2} \log_{\frac{1}{2\sqrt{2}}} 4 \), we will follow these steps: ### Step 1: Simplify the Right Side First, we simplify the right-hand side of the inequality. \[ \log_{\frac{1}{2\sqrt{2}}} 4 = \frac{\log 4}{\log \left(\frac{1}{2\sqrt{2}}\right)} \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

Solve log_(3)(x+2)(x+4)+log_(1//3)(x+2) lt 1/2 log_(sqrt3)7 .

f(x)=ln(lnx) (x>1) is increasing in a) (0,1) b) (1, oo) c) (0,2) d) (-oo, 1)

f(x)=(x-2)|x-3| is monotonically increasing in (a) (-oo,5/2)uu(3,oo) (b) (5/2,oo) (c) (2,oo) (d) (-oo,3)

The value of a for which the function f(x)=(4a-3)(x+log5)+2(a-7)cot(x/2)sin^2(x/2) does not possess critical points is (a) (-oo,-4/3) (b) (-oo,-1) (c) [1,oo) (d) (2,oo)

If f(x)=int_(0)^(x)log_(0.5)((2t-8)/(t-2))dt , then the interval in which f(x) is increasing is (a) (-oo,2)uu(6,oo) (b) (4,6) (c) (-oo,2)uu(4,oo) (d) (2,6)

Solve 4^(log_(9)x)-6x^(log_(9)2)+2^(log_(3)27)=0 .

Solve log_4(log_3x)-log_(1//4)(log_(1//3)y)=0 and x^2+y^2=17/4 .

If (log)_(0. 3)(x-1)<(log)_(0. 09)(x-1), then x lies in the interval (2,oo) (b) (1,2) (-2,-1) (d) None of these

log(1+x+x^(2)+...oo)=