Home
Class 12
MATHS
If theta in (pi//4, pi//2) and sum(n=1)^...

If `theta in (pi//4, pi//2)` and `sum_(n=1)^(oo)(1)/(tan^(n)theta)=sin theta + cos theta`, then the value of tan `theta` is

A

`sqrt(3)`

B

`sqrt(2)+1`

C

`2+sqrt(3)`

D

`sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\tan \theta\) given that \[ \sum_{n=1}^{\infty} \frac{1}{\tan^n \theta} = \sin \theta + \cos \theta \] where \(\theta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)\). ### Step 1: Recognize the series as a geometric series The series \(\sum_{n=1}^{\infty} \frac{1}{\tan^n \theta}\) can be recognized as a geometric series with the first term \(a = \frac{1}{\tan \theta}\) and the common ratio \(r = \frac{1}{\tan \theta}\). The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} = \frac{\frac{1}{\tan \theta}}{1 - \frac{1}{\tan \theta}} = \frac{\frac{1}{\tan \theta}}{\frac{\tan \theta - 1}{\tan \theta}} = \frac{1}{\tan \theta - 1} \] ### Step 2: Set the equation Now we can set this equal to \(\sin \theta + \cos \theta\): \[ \frac{1}{\tan \theta - 1} = \sin \theta + \cos \theta \] ### Step 3: Cross-multiply Cross-multiplying gives: \[ 1 = (\tan \theta - 1)(\sin \theta + \cos \theta) \] Expanding this yields: \[ 1 = \tan \theta \sin \theta + \tan \theta \cos \theta - \sin \theta - \cos \theta \] ### Step 4: Substitute \(\tan \theta\) Recall that \(\tan \theta = \frac{\sin \theta}{\cos \theta}\). Substituting this into the equation gives: \[ 1 = \left(\frac{\sin \theta}{\cos \theta}\right) \sin \theta + \left(\frac{\sin \theta}{\cos \theta}\right) \cos \theta - \sin \theta - \cos \theta \] This simplifies to: \[ 1 = \frac{\sin^2 \theta}{\cos \theta} + \sin \theta - \sin \theta - \cos \theta \] Thus, we have: \[ 1 = \frac{\sin^2 \theta}{\cos \theta} - \cos \theta \] ### Step 5: Multiply through by \(\cos \theta\) Multiplying through by \(\cos \theta\) gives: \[ \cos \theta = \sin^2 \theta - \cos^2 \theta \] ### Step 6: Use the identity \(\sin^2 \theta + \cos^2 \theta = 1\) We can rewrite \(\sin^2 \theta\) as \(1 - \cos^2 \theta\): \[ \cos \theta = (1 - \cos^2 \theta) - \cos^2 \theta \] This simplifies to: \[ \cos \theta = 1 - 2\cos^2 \theta \] ### Step 7: Rearranging the equation Rearranging gives us: \[ 2\cos^2 \theta + \cos \theta - 1 = 0 \] ### Step 8: Solve the quadratic equation Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 2\), \(b = 1\), and \(c = -1\): \[ \cos \theta = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} = \frac{-1 \pm \sqrt{1 + 8}}{4} = \frac{-1 \pm 3}{4} \] This gives: \[ \cos \theta = \frac{2}{4} = \frac{1}{2} \quad \text{or} \quad \cos \theta = \frac{-4}{4} = -1 \] ### Step 9: Determine valid solutions Since \(\theta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)\), \(\cos \theta\) must be positive, thus: \[ \cos \theta = \frac{1}{2} \implies \theta = \frac{\pi}{3} \] ### Step 10: Find \(\tan \theta\) Finally, we find \(\tan \theta\): \[ \tan \theta = \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] Thus, the value of \(\tan \theta\) is: \[ \boxed{\sqrt{3}} \]

To solve the problem, we need to find the value of \(\tan \theta\) given that \[ \sum_{n=1}^{\infty} \frac{1}{\tan^n \theta} = \sin \theta + \cos \theta \] where \(\theta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)\). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Advanced Multiple correct answers type|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If tan^(4)theta +tan^(2) theta = 2 , then the value of cos^(4)theta +cos^(2)theta is-

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

If sin(pi cos theta) = cos(pi sin theta) , then the value of cos(theta+- pi/4) is

Prove that (1 - cos 2 theta)/( sin 2 theta) = tan theta.

If sin theta = cos theta find the value of : 3 tan ^(2) theta+ 2 sin ^(2) theta -1

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If pi/2 < theta < (3pi)/2 then sqrt ((1-sin theta)/(1+sin theta))= a. sec theta-tan theta, b. sec theta + tan theta, c. tan theta-sec theta, d. none of these

Prove that sec theta + tan theta = tan (pi/4 + theta/2)

If f(theta) = sin(tan^(-1)(sintheta/sqrt(cos2theta))) , where -pi/4 lt theta lt pi/4, then the value of d/(d(tantheta))\ f(theta) is

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -SINGLE CORRECT ANSWER TYPE
  1. The circular wire of diameter 10 cm is cut and placed along the circum...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. If theta in (pi//4, pi//2) and sum(n=1)^(oo)(1)/(tan^(n)theta)=sin the...

    Text Solution

    |

  4. The value of (tan^(2)20^(@)-sin^(2)20^(@))/(tan^(2)20^(@).sin^(2)20^(@...

    Text Solution

    |

  5. If 15 sin^(4)alpha+10cos^(4)alpha=6, then the value of 8 cosec^(6)alph...

    Text Solution

    |

  6. In DeltaABC, if sin A + sin B + sin C= 1 + sqrt2 and cos A+cos B+cos...

    Text Solution

    |

  7. If (sin^(2)x-2cos^(2)x+1)/(sin^(2)x+2cos^(2)x-1)=4, then the value of ...

    Text Solution

    |

  8. If sintheta,tantheta,costheta are in G.P. then 4sin^2theta-3sin^4theta...

    Text Solution

    |

  9. If tantheta-cottheta=aandsintheta+costheta=b, then, (b^2-1)^2(a^2+4...

    Text Solution

    |

  10. The least value of 18 sin^(2)theta+2 cosec^(2)theta-3 is (a) -15 (b) ...

    Text Solution

    |

  11. If tan^2 alpha tan^2 beta + tan^2 beta tan^2 gamma + tan^2 gamma tan^2...

    Text Solution

    |

  12. If x,y,z be all positive acute angles then the least value of tanx(cot...

    Text Solution

    |

  13. Three circles each of radius 1, touch one another externally and they ...

    Text Solution

    |

  14. If (cos alpha)/(cos A)+(sin alpha)/(sin A)+(sin beta)/(sin A)=1, where...

    Text Solution

    |

  15. Consider angles alpha = (2n+(1)/(2))pi pm A and beta = m pi +(-1)^(m)(...

    Text Solution

    |

  16. Which of the following is true ?

    Text Solution

    |

  17. If the angle A of a triangle ABC is given by the equation 5 cos A + 3 ...

    Text Solution

    |

  18. Which of the following is greatest ?

    Text Solution

    |

  19. The number of value/values of x for which sin y=x^(2)-2x si possible i...

    Text Solution

    |

  20. Which of the following is not correct ?

    Text Solution

    |