Home
Class 12
MATHS
If (cos alpha)/(cos A)+(sin alpha)/(sin ...

If `(cos alpha)/(cos A)+(sin alpha)/(sin A)+(sin beta)/(sin A)=1`, where `alpha` and `beta` do not differ by an even multiple of `pi`, prove that `(cos alpha cos beta)/(cos^(2)A)+(sin alpha sin beta)/(sin^(2)A)=`

A

`-2`

B

`-1`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To prove the given equation, we start with the equation provided in the problem: \[ \frac{\cos \alpha}{\cos A} + \frac{\sin \alpha}{\sin A} + \frac{\sin \beta}{\sin A} = 1 \] Let’s denote \( x = \frac{\sin \alpha}{\sin A} \) and \( y = \frac{\sin \beta}{\sin A} \). Thus, we can rewrite the equation as: \[ \frac{\cos \alpha}{\cos A} + x + y = 1 \] From this, we can express \( \frac{\cos \alpha}{\cos A} \): \[ \frac{\cos \alpha}{\cos A} = 1 - x - y \] Now, squaring both sides gives: \[ \left(\frac{\cos \alpha}{\cos A}\right)^2 = (1 - x - y)^2 \] Expanding the right-hand side: \[ \frac{\cos^2 \alpha}{\cos^2 A} = 1 - 2(1)(x + y) + (x + y)^2 \] This simplifies to: \[ \frac{\cos^2 \alpha}{\cos^2 A} = 1 - 2(x + y) + (x^2 + 2xy + y^2) \] Now, we can express \( x^2 \) and \( y^2 \) in terms of \( \sin \): \[ x^2 = \left(\frac{\sin \alpha}{\sin A}\right)^2 \quad \text{and} \quad y^2 = \left(\frac{\sin \beta}{\sin A}\right)^2 \] Substituting these into our equation, we have: \[ \frac{\cos^2 \alpha}{\cos^2 A} = 1 - 2\left(\frac{\sin \alpha + \sin \beta}{\sin A}\right) + \left(\frac{\sin^2 \alpha + \sin^2 \beta + 2\sin \alpha \sin \beta}{\sin^2 A}\right) \] Next, we can derive the expressions for \( \frac{\cos \alpha \cos \beta}{\cos^2 A} \) and \( \frac{\sin \alpha \sin \beta}{\sin^2 A} \). By Vieta's formulas, we know that: 1. The sum of the roots \( \frac{\sin \alpha + \sin \beta}{\sin A} = 2 \) (from the quadratic equation). 2. The product of the roots \( \frac{\sin \alpha \sin \beta}{\sin^2 A} = -\sin^2 A \). Thus, we can write: \[ \frac{\sin \alpha \sin \beta}{\sin^2 A} = -\sin^2 A \] And similarly for cosine: \[ \frac{\cos \alpha \cos \beta}{\cos^2 A} = -\cos^2 A \] Now, adding these two results: \[ \frac{\cos \alpha \cos \beta}{\cos^2 A} + \frac{\sin \alpha \sin \beta}{\sin^2 A} = -\cos^2 A - \sin^2 A \] Since \( \cos^2 A + \sin^2 A = 1 \), we have: \[ -\cos^2 A - \sin^2 A = -1 \] Thus, we conclude: \[ \frac{\cos \alpha \cos \beta}{\cos^2 A} + \frac{\sin \alpha \sin \beta}{\sin^2 A} = -1 \] **Final Result:** \[ \frac{\cos \alpha \cos \beta}{\cos^2 A} + \frac{\sin \alpha \sin \beta}{\sin^2 A} = -1 \]

To prove the given equation, we start with the equation provided in the problem: \[ \frac{\cos \alpha}{\cos A} + \frac{\sin \alpha}{\sin A} + \frac{\sin \beta}{\sin A} = 1 \] Let’s denote \( x = \frac{\sin \alpha}{\sin A} \) and \( y = \frac{\sin \beta}{\sin A} \). Thus, we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Advanced Multiple correct answers type|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

If ( cos x - cos alpha)/(cos x - cos beta) = ( sin^2 alpha cos beta)/(sin^2 beta cos alpha) then cos x =

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin alpha hatk is a

Prove by vector methods that sin(alpha+beta)=sin alphacos beta+cos alphasin beta

Prove that: tan(alpha+beta)tan(alpha-beta)=(sin^2 alpha-sin^2 beta)/(cos^2 alpha-sin^2 beta)

alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != cos beta)&(sin alpha != sin beta) Then tan((alpha+beta)/2)=?

Prove that : cos^2alpha+cos^2(alpha+beta)-2cosalphacosbetacos(alpha+beta)=sin^2beta

Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -SINGLE CORRECT ANSWER TYPE
  1. If x,y,z be all positive acute angles then the least value of tanx(cot...

    Text Solution

    |

  2. Three circles each of radius 1, touch one another externally and they ...

    Text Solution

    |

  3. If (cos alpha)/(cos A)+(sin alpha)/(sin A)+(sin beta)/(sin A)=1, where...

    Text Solution

    |

  4. Consider angles alpha = (2n+(1)/(2))pi pm A and beta = m pi +(-1)^(m)(...

    Text Solution

    |

  5. Which of the following is true ?

    Text Solution

    |

  6. If the angle A of a triangle ABC is given by the equation 5 cos A + 3 ...

    Text Solution

    |

  7. Which of the following is greatest ?

    Text Solution

    |

  8. The number of value/values of x for which sin y=x^(2)-2x si possible i...

    Text Solution

    |

  9. Which of the following is not correct ?

    Text Solution

    |

  10. If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(...

    Text Solution

    |

  11. Number of ordered pairs (a, x) satisfying the equation sec^2(a+2)x+a^2...

    Text Solution

    |

  12. Find the range of y=sin^3x-6sin^2x+11sinx-6.

    Text Solution

    |

  13. Let f(x)=a sin x+c, where a and c are real numbers and a>0. Then f(x)l...

    Text Solution

    |

  14. Find sum of maximum and minimum values of the function f(x) = sin^2x +...

    Text Solution

    |

  15. theta(1),theta(2),theta(3) are angles of 1^(st) quadrant if tan theta(...

    Text Solution

    |

  16. The value of 2 cos10^(@)+sin 100^(@)+sin 1000^(@)+sin 10000^(@) is

    Text Solution

    |

  17. The two legs of a right triangle are sin theta +sin ((3pi)/2-theta) an...

    Text Solution

    |

  18. In cyclic quadrilateral ABCD (none of these being 90^(@)), which of th...

    Text Solution

    |

  19. If x = sin 130^(@) cos 80^(@), y = sin 80^(@) cos 130^(@), z = 1+xy, w...

    Text Solution

    |

  20. Suppose A and B are two angles such that A , B in (0,pi) and satisfy s...

    Text Solution

    |