Home
Class 12
MATHS
theta(1),theta(2),theta(3) are angles of...

`theta_(1),theta_(2),theta_(3)` are angles of `1^(st)` quadrant if `tan theta_(1) = cos theta_(1), tan theta_(2) = cosec theta_(2), cos theta_(3)=theta_(3)`. Which of the following is not true ?

A

`theta_(1)lt theta_(2)`

B

`theta_(1)lt theta_(3)`

C

`theta_(3)lt theta_(1)`

D

`theta_(3)lt theta_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given conditions for the angles \( \theta_1, \theta_2, \) and \( \theta_3 \) in the first quadrant. ### Step 1: Analyze \( \theta_1 \) Given: \[ \tan \theta_1 = \cos \theta_1 \] We know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] Thus, we can rewrite the equation: \[ \frac{\sin \theta_1}{\cos \theta_1} = \cos \theta_1 \] Multiplying both sides by \( \cos \theta_1 \) (assuming \( \cos \theta_1 \neq 0 \)): \[ \sin \theta_1 = \cos^2 \theta_1 \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can express \( \sin \theta_1 \) in terms of \( \cos \theta_1 \): \[ \sin^2 \theta_1 = 1 - \cos^2 \theta_1 \] Substituting \( \sin \theta_1 = \cos^2 \theta_1 \): \[ (\cos^2 \theta_1)^2 = 1 - \cos^2 \theta_1 \] \[ \cos^4 \theta_1 + \cos^2 \theta_1 - 1 = 0 \] Let \( x = \cos^2 \theta_1 \): \[ x^2 + x - 1 = 0 \] Using the quadratic formula: \[ x = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2} \] Since \( x = \cos^2 \theta_1 \) must be non-negative, we take: \[ x = \frac{-1 + \sqrt{5}}{2} \] ### Step 2: Analyze \( \theta_2 \) Given: \[ \tan \theta_2 = \csc \theta_2 \] We can rewrite this as: \[ \tan \theta_2 = \frac{1}{\sin \theta_2} \] Thus: \[ \frac{\sin \theta_2}{\cos \theta_2} = \frac{1}{\sin \theta_2} \] Cross-multiplying gives: \[ \sin^2 \theta_2 = \cos \theta_2 \] Using \( \sin^2 \theta_2 + \cos^2 \theta_2 = 1 \): \[ 1 - \cos^2 \theta_2 = \cos \theta_2 \] \[ \cos^2 \theta_2 + \cos \theta_2 - 1 = 0 \] Let \( y = \cos \theta_2 \): \[ y^2 + y - 1 = 0 \] Using the quadratic formula: \[ y = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2} \] Taking the positive root: \[ y = \frac{-1 + \sqrt{5}}{2} \] ### Step 3: Analyze \( \theta_3 \) Given: \[ \cos \theta_3 = \theta_3 \] The function \( y = \cos x \) intersects \( y = x \) only at one point in the first quadrant, which is approximately \( \theta_3 \approx 0.739 \) (the fixed point of the cosine function). ### Step 4: Compare the Angles From the analysis: - \( \theta_1 < \theta_3 \) since \( \cos^2 \theta_1 \) is less than 1. - \( \theta_2 > 45^\circ \) since \( \tan \theta_2 > 1 \). ### Conclusion The relationships we have are: - \( \theta_1 < \theta_3 \) - \( \theta_2 > 45^\circ \) Thus, the statement that is **not true** is: \[ \theta_3 < \theta_1 \] ### Final Answer The option that is not true is \( \theta_3 < \theta_1 \).

To solve the problem, we need to analyze the given conditions for the angles \( \theta_1, \theta_2, \) and \( \theta_3 \) in the first quadrant. ### Step 1: Analyze \( \theta_1 \) Given: \[ \tan \theta_1 = \cos \theta_1 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Advanced Multiple correct answers type|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3)=

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3 , then cos theta_(1)+cos theta_(2)+cos theta_(3)=

Prove that (tan theta)/(sec theta -1)+ (tan theta)/(sec theta +1) = 2 cosec\ theta

Prove that : (tan theta)/(1 -cot theta) + (cot theta)/(1- tan theta) = 1 + sec theta cosec theta

Prove that (tan theta)/(1-cot theta)+(cot theta)/(1-tan theta) = (sec theta cosec theta +1)

For all theta, tan theta+ cos theta + tan (-theta) + cos(-theta)=

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

Prove that (1- cos theta + sin theta)/( 1+cos theta +sin theta) = "tan"(theta)/(2) .

If "tan" 2 theta "tan" theta =1, "then" theta =

Prove the identities: (1+cot theta - cosec theta) (1+ tan theta + sec theta)=2

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -SINGLE CORRECT ANSWER TYPE
  1. The number of value/values of x for which sin y=x^(2)-2x si possible i...

    Text Solution

    |

  2. Which of the following is not correct ?

    Text Solution

    |

  3. If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(...

    Text Solution

    |

  4. Number of ordered pairs (a, x) satisfying the equation sec^2(a+2)x+a^2...

    Text Solution

    |

  5. Find the range of y=sin^3x-6sin^2x+11sinx-6.

    Text Solution

    |

  6. Let f(x)=a sin x+c, where a and c are real numbers and a>0. Then f(x)l...

    Text Solution

    |

  7. Find sum of maximum and minimum values of the function f(x) = sin^2x +...

    Text Solution

    |

  8. theta(1),theta(2),theta(3) are angles of 1^(st) quadrant if tan theta(...

    Text Solution

    |

  9. The value of 2 cos10^(@)+sin 100^(@)+sin 1000^(@)+sin 10000^(@) is

    Text Solution

    |

  10. The two legs of a right triangle are sin theta +sin ((3pi)/2-theta) an...

    Text Solution

    |

  11. In cyclic quadrilateral ABCD (none of these being 90^(@)), which of th...

    Text Solution

    |

  12. If x = sin 130^(@) cos 80^(@), y = sin 80^(@) cos 130^(@), z = 1+xy, w...

    Text Solution

    |

  13. Suppose A and B are two angles such that A , B in (0,pi) and satisfy s...

    Text Solution

    |

  14. Value of expression sin(pi/9)+sin((2pi)/9)+sin((3pi)/9)+...+sin((17pi)...

    Text Solution

    |

  15. cos^(2)73^(@)+cos^(2)47^(@)-sin^(2)43^(@)+sin^(2)107^(@) is equal to

    Text Solution

    |

  16. The expression (tan(x-(pi)/(2)).cos((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x...

    Text Solution

    |

  17. The value of (sin300^(@).tan330^(@).sec420^(@))/(tan135^(@).sin210^(@)...

    Text Solution

    |

  18. If the bisector of angle A of the triangle ABC makes an angle theta wi...

    Text Solution

    |

  19. In a DeltaABC, if median AD is perpendicular to AB, the tan A+2 tan B ...

    Text Solution

    |

  20. The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for re...

    Text Solution

    |