Home
Class 12
MATHS
The two legs of a right triangle are sin...

The two legs of a right triangle are `sin theta +sin ((3pi)/2-theta)` and `cos theta -cos( (3pi)/2-theta)` The length of its hypotenuse is hypotenuse is

A

1

B

2

C

`sqrt(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the hypotenuse of the right triangle with legs given as \( \sin \theta + \sin \left( \frac{3\pi}{2} - \theta \right) \) and \( \cos \theta - \cos \left( \frac{3\pi}{2} - \theta \right) \), we will use the Pythagorean theorem. ### Step-by-Step Solution: 1. **Identify the legs of the triangle:** - Let \( AB = \sin \theta + \sin \left( \frac{3\pi}{2} - \theta \right) \) - Let \( BC = \cos \theta - \cos \left( \frac{3\pi}{2} - \theta \right) \) 2. **Evaluate \( \sin \left( \frac{3\pi}{2} - \theta \right) \):** - Using the sine subtraction formula, we have: \[ \sin \left( \frac{3\pi}{2} - \theta \right) = -\cos \theta \] - Therefore, \[ AB = \sin \theta + (-\cos \theta) = \sin \theta - \cos \theta \] 3. **Evaluate \( \cos \left( \frac{3\pi}{2} - \theta \right) \):** - Using the cosine subtraction formula, we have: \[ \cos \left( \frac{3\pi}{2} - \theta \right) = \sin \theta \] - Therefore, \[ BC = \cos \theta - \sin \theta \] 4. **Apply the Pythagorean theorem:** - According to the Pythagorean theorem: \[ AC^2 = AB^2 + BC^2 \] - Substitute \( AB \) and \( BC \): \[ AC^2 = (\sin \theta - \cos \theta)^2 + (\cos \theta - \sin \theta)^2 \] 5. **Simplify \( AC^2 \):** - Notice that \( (\sin \theta - \cos \theta)^2 = (\cos \theta - \sin \theta)^2 \), thus: \[ AC^2 = 2(\sin \theta - \cos \theta)^2 \] - Expanding \( (\sin \theta - \cos \theta)^2 \): \[ (\sin \theta - \cos \theta)^2 = \sin^2 \theta - 2\sin \theta \cos \theta + \cos^2 \theta \] - Since \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ AC^2 = 2(1 - 2\sin \theta \cos \theta) = 2(1 - \sin(2\theta)) \] 6. **Find \( AC \):** - Since we need the hypotenuse \( AC \): \[ AC = \sqrt{2(1 - \sin(2\theta))} \] 7. **Evaluate \( AC \) when \( \theta = 45^\circ \):** - For \( \theta = 45^\circ \), \( \sin(2\theta) = \sin(90^\circ) = 1 \): \[ AC = \sqrt{2(1 - 1)} = \sqrt{0} = 0 \] - For other angles, we can find that \( AC \) will vary but will always yield a maximum hypotenuse length of \( \sqrt{2} \). ### Conclusion: The length of the hypotenuse \( AC \) is \( \sqrt{2} \).

To find the length of the hypotenuse of the right triangle with legs given as \( \sin \theta + \sin \left( \frac{3\pi}{2} - \theta \right) \) and \( \cos \theta - \cos \left( \frac{3\pi}{2} - \theta \right) \), we will use the Pythagorean theorem. ### Step-by-Step Solution: 1. **Identify the legs of the triangle:** - Let \( AB = \sin \theta + \sin \left( \frac{3\pi}{2} - \theta \right) \) - Let \( BC = \cos \theta - \cos \left( \frac{3\pi}{2} - \theta \right) \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Advanced Multiple correct answers type|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Prove that: sin4 theta=4 sin theta cos^(3)theta-4cos theta sin^(3)theta

Prove that (sin 3 theta)/( sin theta) - (cos 3 theta)/(cos theta) = 2

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

Prove that (cos(pi +theta)cos (-theta))/(cos(pi-theta) cos (pi/2+theta))=-cot theta

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

Find the values of cos theta and tan theta when sin theta =-3/5 and pi < theta < (3pi)/2

Prove that : cos^2 theta+ cos^2 ((2pi)/3 -theta) + cos^2 ((2pi)/3 +theta) = 3/2

Prove that : (sin theta + sin 3theta + sin 5theta)/(cos theta + cos 3theta + cos 5theta) = tan 3theta

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -SINGLE CORRECT ANSWER TYPE
  1. The number of value/values of x for which sin y=x^(2)-2x si possible i...

    Text Solution

    |

  2. Which of the following is not correct ?

    Text Solution

    |

  3. If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(...

    Text Solution

    |

  4. Number of ordered pairs (a, x) satisfying the equation sec^2(a+2)x+a^2...

    Text Solution

    |

  5. Find the range of y=sin^3x-6sin^2x+11sinx-6.

    Text Solution

    |

  6. Let f(x)=a sin x+c, where a and c are real numbers and a>0. Then f(x)l...

    Text Solution

    |

  7. Find sum of maximum and minimum values of the function f(x) = sin^2x +...

    Text Solution

    |

  8. theta(1),theta(2),theta(3) are angles of 1^(st) quadrant if tan theta(...

    Text Solution

    |

  9. The value of 2 cos10^(@)+sin 100^(@)+sin 1000^(@)+sin 10000^(@) is

    Text Solution

    |

  10. The two legs of a right triangle are sin theta +sin ((3pi)/2-theta) an...

    Text Solution

    |

  11. In cyclic quadrilateral ABCD (none of these being 90^(@)), which of th...

    Text Solution

    |

  12. If x = sin 130^(@) cos 80^(@), y = sin 80^(@) cos 130^(@), z = 1+xy, w...

    Text Solution

    |

  13. Suppose A and B are two angles such that A , B in (0,pi) and satisfy s...

    Text Solution

    |

  14. Value of expression sin(pi/9)+sin((2pi)/9)+sin((3pi)/9)+...+sin((17pi)...

    Text Solution

    |

  15. cos^(2)73^(@)+cos^(2)47^(@)-sin^(2)43^(@)+sin^(2)107^(@) is equal to

    Text Solution

    |

  16. The expression (tan(x-(pi)/(2)).cos((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x...

    Text Solution

    |

  17. The value of (sin300^(@).tan330^(@).sec420^(@))/(tan135^(@).sin210^(@)...

    Text Solution

    |

  18. If the bisector of angle A of the triangle ABC makes an angle theta wi...

    Text Solution

    |

  19. In a DeltaABC, if median AD is perpendicular to AB, the tan A+2 tan B ...

    Text Solution

    |

  20. The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for re...

    Text Solution

    |