Home
Class 12
MATHS
The value of (sin300^(@).tan330^(@).sec4...

The value of `(sin300^(@).tan330^(@).sec420^(@))/(tan135^(@).sin210^(@).sec315^(@))` is

A

`-1`

B

1

C

`sqrt(2)`

D

`sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sin 300^\circ \cdot \tan 330^\circ \cdot \sec 420^\circ) / (\tan 135^\circ \cdot \sin 210^\circ \cdot \sec 315^\circ)\), we will evaluate each trigonometric function step by step. ### Step 1: Calculate \(\sin 300^\circ\) \[ \sin 300^\circ = \sin(360^\circ - 60^\circ) = -\sin 60^\circ \] Since \(300^\circ\) is in the fourth quadrant where sine is negative, we have: \[ \sin 60^\circ = \frac{\sqrt{3}}{2} \implies \sin 300^\circ = -\frac{\sqrt{3}}{2} \] **Hint:** Use the identity \(\sin(360^\circ - x) = -\sin x\) for angles in the fourth quadrant. ### Step 2: Calculate \(\tan 330^\circ\) \[ \tan 330^\circ = \tan(360^\circ - 30^\circ) = -\tan 30^\circ \] Since \(330^\circ\) is also in the fourth quadrant where tangent is negative: \[ \tan 30^\circ = \frac{1}{\sqrt{3}} \implies \tan 330^\circ = -\frac{1}{\sqrt{3}} \] **Hint:** Use the identity \(\tan(360^\circ - x) = -\tan x\) for angles in the fourth quadrant. ### Step 3: Calculate \(\sec 420^\circ\) \[ \sec 420^\circ = \sec(360^\circ + 60^\circ) = \sec 60^\circ \] Since \(420^\circ\) is in the first quadrant: \[ \sec 60^\circ = \frac{1}{\cos 60^\circ} = \frac{1}{\frac{1}{2}} = 2 \] **Hint:** Use the identity \(\sec(x + 360^\circ) = \sec x\). ### Step 4: Calculate \(\tan 135^\circ\) \[ \tan 135^\circ = \tan(180^\circ - 45^\circ) = -\tan 45^\circ \] Since \(135^\circ\) is in the second quadrant where tangent is negative: \[ \tan 45^\circ = 1 \implies \tan 135^\circ = -1 \] **Hint:** Use the identity \(\tan(180^\circ - x) = -\tan x\). ### Step 5: Calculate \(\sin 210^\circ\) \[ \sin 210^\circ = \sin(180^\circ + 30^\circ) = -\sin 30^\circ \] Since \(210^\circ\) is in the third quadrant where sine is negative: \[ \sin 30^\circ = \frac{1}{2} \implies \sin 210^\circ = -\frac{1}{2} \] **Hint:** Use the identity \(\sin(180^\circ + x) = -\sin x\). ### Step 6: Calculate \(\sec 315^\circ\) \[ \sec 315^\circ = \sec(360^\circ - 45^\circ) = \sec 45^\circ \] Since \(315^\circ\) is in the fourth quadrant: \[ \sec 45^\circ = \frac{1}{\cos 45^\circ} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \] **Hint:** Use the identity \(\sec(360^\circ - x) = \sec x\). ### Step 7: Substitute the values into the expression Now substituting all the values we calculated: \[ \frac{(-\frac{\sqrt{3}}{2}) \cdot (-\frac{1}{\sqrt{3}}) \cdot 2}{(-1) \cdot (-\frac{1}{2}) \cdot \sqrt{2}} \] ### Step 8: Simplify the expression Calculating the numerator: \[ (-\frac{\sqrt{3}}{2}) \cdot (-\frac{1}{\sqrt{3}}) \cdot 2 = \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{3}} \cdot 2 = 1 \] Calculating the denominator: \[ (-1) \cdot (-\frac{1}{2}) \cdot \sqrt{2} = \frac{1}{2} \cdot \sqrt{2} = \frac{\sqrt{2}}{2} \] Thus, the overall expression simplifies to: \[ \frac{1}{\frac{\sqrt{2}}{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \] ### Final Answer The value of the expression is \(\sqrt{2}\). ---

To solve the expression \((\sin 300^\circ \cdot \tan 330^\circ \cdot \sec 420^\circ) / (\tan 135^\circ \cdot \sin 210^\circ \cdot \sec 315^\circ)\), we will evaluate each trigonometric function step by step. ### Step 1: Calculate \(\sin 300^\circ\) \[ \sin 300^\circ = \sin(360^\circ - 60^\circ) = -\sin 60^\circ \] Since \(300^\circ\) is in the fourth quadrant where sine is negative, we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Advanced Multiple correct answers type|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Find the value of (sin30^(@).tan330^(@).sec420^(@))/(tan135^(@).sin135^(@).sin210^(@)sec315^(@))

Value of sec(-1680^(@)).sin330^(@)

(sin150^(@)-5cos300^(@)+7tan 225^(@))/(tan 135^(@)+3sin 210^(@))

Find the value of sin330^(@)cos120^(@)+cos210^(@)sin300^(@)

Find the value of : (tan45^(@))/(cosec30^(@))+(sec60^(@))/(cot45^(@))-(5sin90^(@))/(2cos0^(@))

find the value of tan(210^@)

If P=(sin 300^0dottan 330^0dotsec 420^0)/(tan135^0dots in 210^0dots e c 315^0)& Q=(s e c 480^0dotcos e c 570^0t a n 330^0)/(sin 600^0dotcos 660^0dotcot 405^0) then Pa n dQ are respectively: 2, 16 (b) sqrt(2),(16)/3 -2,3/(16) (d) none of these

Evaluate sin 10^(@)sec80^(@)+4tan45^(@) .

Evaluate : tan7^(@)tan23^(@)tan60^(@)tan67^(@)tan83^(@)+(cot54^(@))/(tan36^(@))+sin20^(@)sec70^(@)-2

Find the values of: (i) tan (-30^(@)) (ii) sin 120^(@) (iii) sin 135^(@) (iv) cos 150^(@) (v) sin 270^(@) (vi) cos 270^(@)

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -SINGLE CORRECT ANSWER TYPE
  1. The number of value/values of x for which sin y=x^(2)-2x si possible i...

    Text Solution

    |

  2. Which of the following is not correct ?

    Text Solution

    |

  3. If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(...

    Text Solution

    |

  4. Number of ordered pairs (a, x) satisfying the equation sec^2(a+2)x+a^2...

    Text Solution

    |

  5. Find the range of y=sin^3x-6sin^2x+11sinx-6.

    Text Solution

    |

  6. Let f(x)=a sin x+c, where a and c are real numbers and a>0. Then f(x)l...

    Text Solution

    |

  7. Find sum of maximum and minimum values of the function f(x) = sin^2x +...

    Text Solution

    |

  8. theta(1),theta(2),theta(3) are angles of 1^(st) quadrant if tan theta(...

    Text Solution

    |

  9. The value of 2 cos10^(@)+sin 100^(@)+sin 1000^(@)+sin 10000^(@) is

    Text Solution

    |

  10. The two legs of a right triangle are sin theta +sin ((3pi)/2-theta) an...

    Text Solution

    |

  11. In cyclic quadrilateral ABCD (none of these being 90^(@)), which of th...

    Text Solution

    |

  12. If x = sin 130^(@) cos 80^(@), y = sin 80^(@) cos 130^(@), z = 1+xy, w...

    Text Solution

    |

  13. Suppose A and B are two angles such that A , B in (0,pi) and satisfy s...

    Text Solution

    |

  14. Value of expression sin(pi/9)+sin((2pi)/9)+sin((3pi)/9)+...+sin((17pi)...

    Text Solution

    |

  15. cos^(2)73^(@)+cos^(2)47^(@)-sin^(2)43^(@)+sin^(2)107^(@) is equal to

    Text Solution

    |

  16. The expression (tan(x-(pi)/(2)).cos((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x...

    Text Solution

    |

  17. The value of (sin300^(@).tan330^(@).sec420^(@))/(tan135^(@).sin210^(@)...

    Text Solution

    |

  18. If the bisector of angle A of the triangle ABC makes an angle theta wi...

    Text Solution

    |

  19. In a DeltaABC, if median AD is perpendicular to AB, the tan A+2 tan B ...

    Text Solution

    |

  20. The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for re...

    Text Solution

    |