Home
Class 12
MATHS
The maximum value of 1+sin((pi)/(6)+thet...

The maximum value of `1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta)` for real values of `theta` is

A

3

B

5

C

4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \(1 + \sin\left(\frac{\pi}{6} + \theta\right) + 2\cos\left(\frac{\pi}{3} - \theta\right)\), we can follow these steps: ### Step 1: Rewrite the Expression We start by rewriting the expression: \[ f(\theta) = 1 + \sin\left(\frac{\pi}{6} + \theta\right) + 2\cos\left(\frac{\pi}{3} - \theta\right) \] ### Step 2: Use Trigonometric Identities We know that: - \(\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\) - \(\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}\) Using these values, we can express \(f(\theta)\) as: \[ f(\theta) = 1 + \sin\left(\frac{\pi}{6} + \theta\right) + 2\left(\frac{1}{2}\cos(-\theta)\right) \] This simplifies to: \[ f(\theta) = 1 + \sin\left(\frac{\pi}{6} + \theta\right) + \cos(-\theta) \] Since \(\cos(-\theta) = \cos(\theta)\), we have: \[ f(\theta) = 1 + \sin\left(\frac{\pi}{6} + \theta\right) + \cos(\theta) \] ### Step 3: Find the Maximum Value of the Sine and Cosine Functions To maximize \(f(\theta)\), we need to consider the maximum values of \(\sin\) and \(\cos\): - The maximum value of \(\sin\) is 1. - The maximum value of \(\cos\) is also 1. ### Step 4: Substitute Maximum Values The maximum value of \(\sin\left(\frac{\pi}{6} + \theta\right)\) occurs when \(\frac{\pi}{6} + \theta = \frac{\pi}{2}\), leading to: \[ \sin\left(\frac{\pi}{6} + \theta\right) = 1 \] The maximum value of \(\cos(\theta)\) occurs when \(\theta = 0\), leading to: \[ \cos(\theta) = 1 \] ### Step 5: Calculate the Maximum Value of \(f(\theta)\) Substituting these maximum values into \(f(\theta)\): \[ f(\theta)_{\text{max}} = 1 + 1 + 1 = 3 \] ### Step 6: Final Calculation However, we need to consider that the maximum value of \(2\cos\left(\frac{\pi}{3} - \theta\right)\) can also contribute to the overall maximum. The maximum value of \(2\cos\left(\frac{\pi}{3} - \theta\right)\) is \(2\) when \(\theta = \frac{\pi}{3}\). Thus, the maximum value of the entire expression is: \[ f(\theta)_{\text{max}} = 1 + 1 + 2 = 4 \] ### Conclusion The maximum value of \(1 + \sin\left(\frac{\pi}{6} + \theta\right) + 2\cos\left(\frac{\pi}{3} - \theta\right)\) is \(4\). ---

To find the maximum value of the expression \(1 + \sin\left(\frac{\pi}{6} + \theta\right) + 2\cos\left(\frac{\pi}{3} - \theta\right)\), we can follow these steps: ### Step 1: Rewrite the Expression We start by rewriting the expression: \[ f(\theta) = 1 + \sin\left(\frac{\pi}{6} + \theta\right) + 2\cos\left(\frac{\pi}{3} - \theta\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Advanced Multiple correct answers type|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

The maximum value of 1+sin(pi/4+theta)+2cos(pi/4-theta) for real values of theta is

Find the maximum value of 1+sin(pi/4+theta) + 2cos(pi/4-theta) .

Find the maximum and minimum value of 5cos theta+3sin(theta+(pi)/(6)) for all real values of theta . .

The maximum values of 3 costheta+5sin(theta-(pi)/(6)) for any real value of theta is:

The maximum value of 5 sin theta+3 sin (theta + pi/3) + 3 is -

If A = sin^2 theta+ cos^4 theta , then for all real values of theta

Statement I The maximum value of sin theta+costheta is 2. Statement II The maximum value of sin theta is 1 and that of cos theta is also 1.

For theta in(0,pi/2) , the maximum value of sin(theta+pi/6)+cos(theta+pi/6) is attained at theta =

If sin(pi cos theta) = cos(pi sin theta) , then the value of cos(theta+- pi/4) is

Find maximum and minium value of 5costheta+3sintheta(theta+pi/6) for all real values of theta .

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -SINGLE CORRECT ANSWER TYPE
  1. The number of value/values of x for which sin y=x^(2)-2x si possible i...

    Text Solution

    |

  2. Which of the following is not correct ?

    Text Solution

    |

  3. If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(...

    Text Solution

    |

  4. Number of ordered pairs (a, x) satisfying the equation sec^2(a+2)x+a^2...

    Text Solution

    |

  5. Find the range of y=sin^3x-6sin^2x+11sinx-6.

    Text Solution

    |

  6. Let f(x)=a sin x+c, where a and c are real numbers and a>0. Then f(x)l...

    Text Solution

    |

  7. Find sum of maximum and minimum values of the function f(x) = sin^2x +...

    Text Solution

    |

  8. theta(1),theta(2),theta(3) are angles of 1^(st) quadrant if tan theta(...

    Text Solution

    |

  9. The value of 2 cos10^(@)+sin 100^(@)+sin 1000^(@)+sin 10000^(@) is

    Text Solution

    |

  10. The two legs of a right triangle are sin theta +sin ((3pi)/2-theta) an...

    Text Solution

    |

  11. In cyclic quadrilateral ABCD (none of these being 90^(@)), which of th...

    Text Solution

    |

  12. If x = sin 130^(@) cos 80^(@), y = sin 80^(@) cos 130^(@), z = 1+xy, w...

    Text Solution

    |

  13. Suppose A and B are two angles such that A , B in (0,pi) and satisfy s...

    Text Solution

    |

  14. Value of expression sin(pi/9)+sin((2pi)/9)+sin((3pi)/9)+...+sin((17pi)...

    Text Solution

    |

  15. cos^(2)73^(@)+cos^(2)47^(@)-sin^(2)43^(@)+sin^(2)107^(@) is equal to

    Text Solution

    |

  16. The expression (tan(x-(pi)/(2)).cos((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x...

    Text Solution

    |

  17. The value of (sin300^(@).tan330^(@).sec420^(@))/(tan135^(@).sin210^(@)...

    Text Solution

    |

  18. If the bisector of angle A of the triangle ABC makes an angle theta wi...

    Text Solution

    |

  19. In a DeltaABC, if median AD is perpendicular to AB, the tan A+2 tan B ...

    Text Solution

    |

  20. The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for re...

    Text Solution

    |