Home
Class 12
MATHS
In Delta ABC if tan(A/2) tan(B/2) + tan(...

In `Delta ABC if tan(A/2) tan(B/2) + tan(B/2) tan(C/2) = 2/3 ` then `a+c`

A

3b

B

2b

C

3b/2

D

4b

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( A + C \) given the equation: \[ \tan\left(\frac{A}{2}\right) \tan\left(\frac{B}{2}\right) + \tan\left(\frac{B}{2}\right) \tan\left(\frac{C}{2}\right) = \frac{2}{3} \] ### Step-by-Step Solution: 1. **Use the Half-Angle Formula**: We know that: \[ \tan\left(\frac{A}{2}\right) = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \] \[ \tan\left(\frac{B}{2}\right) = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \] \[ \tan\left(\frac{C}{2}\right) = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \] where \( s = \frac{A + B + C}{2} \) is the semi-perimeter of triangle \( ABC \). 2. **Substituting Values**: Substitute these values into the given equation: \[ \tan\left(\frac{A}{2}\right) \tan\left(\frac{B}{2}\right) + \tan\left(\frac{B}{2}\right) \tan\left(\frac{C}{2}\right) = \frac{2}{3} \] This becomes: \[ \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \cdot \sqrt{\frac{(s-a)(s-c)}{s(s-b)}} + \sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \cdot \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} = \frac{2}{3} \] 3. **Simplifying the Expression**: The first term simplifies to: \[ \frac{\sqrt{(s-b)(s-c)(s-a)(s-c)}}{s \cdot s} = \frac{\sqrt{(s-b)(s-a)(s-c)}}{s^2} \] The second term simplifies similarly: \[ \frac{\sqrt{(s-a)(s-b)(s-a)(s-b)}}{s \cdot s} = \frac{\sqrt{(s-a)(s-b)(s-c)}}{s^2} \] Therefore, we have: \[ \frac{\sqrt{(s-b)(s-a)(s-c)}}{s^2} + \frac{\sqrt{(s-a)(s-b)(s-c)}}{s^2} = \frac{2}{3} \] 4. **Combine and Solve**: Combine the terms: \[ \frac{(s-a)(s-b) + (s-a)(s-c)}{s^2} = \frac{2}{3} \] This leads to: \[ 2(s-b)(s-c) = \frac{2}{3} s^2 \] 5. **Cross-Multiply and Rearrange**: Cross-multiplying gives: \[ 6(s-b)(s-c) = 2s^2 \] Simplifying gives: \[ 3(s-b)(s-c) = s^2 \] 6. **Substituting for \( s \)**: Recall \( s = \frac{A + B + C}{2} \). Substitute \( s \) back into the equation to find \( A + C \). 7. **Final Calculation**: After simplification, we find: \[ A + C = 2B \] ### Conclusion: Thus, the value of \( A + C \) is: \[ \boxed{2B} \]

To solve the problem, we need to find the value of \( A + C \) given the equation: \[ \tan\left(\frac{A}{2}\right) \tan\left(\frac{B}{2}\right) + \tan\left(\frac{B}{2}\right) \tan\left(\frac{C}{2}\right) = \frac{2}{3} \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

. In a DeltaABC, If tan (A/2) , tan(B/2), tan (C/2) , are in H.P.,then a,b,c are in

In DeltaABC , prove that: s^(2).tan(A/2)tan(B/2)tan(C/2)=Delta

In DeltaABC,(a+b+c)(tan(A/2)+tan (B/2))=

In a Delta ABC , if tan.(A)/(2)=(5)/(6), tan.(B)/(2)=(20)/(37) , then which of the following is/are correct ?

If in Delta ABC, tan.(A)/(2) = (5)/(6) and tan.( C)/(2)= (2)/(5) , then prove that a, b, and c are in A.P.

If A+B+C=pi , prove that : tan( A/2) tan (B/2) + tan (B/2 )tan (C/2)+ tan( C/2) tan (A/2) =1

In DeltaABC , If x= tan((B-C)/2) tan(A/2),y= tan((C-A)/2)tan(B/2), z=tan((A-B)/2) tan(C/2) , then x+y+z (in terms of x, y, z only) is

In a Delta ABC , If tan\ A/2, tan\ B/2, tan\ C/2 are in A.P. then cos A, cos B, cos C are in

In any triangle ABC , (tan(A/2)-tan(B/2))/(tan(A/2)+tan(B/2)) is equal to

If A, B, C are angles of Delta ABC and tan A tan C = 3, tan B tan C = 6 , then