Home
Class 12
MATHS
In a triangle ABC if tan.(A)/(2)tan.(B)/...

In a triangle ABC if `tan.(A)/(2)tan.(B)/(2)=(1)/(3)` and ab = 4, then the value of c can be

A

1

B

`1.5`

C

`2.5`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of side \( c \) in triangle \( ABC \) given that: \[ \frac{\tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}{1} = \frac{1}{3} \] and \( ab = 4 \). ### Step-by-Step Solution: 1. **Use the formula for \( \tan \left( \frac{A}{2} \right) \) and \( \tan \left( \frac{B}{2} \right) \)**: \[ \tan \left( \frac{A}{2} \right) = \frac{s - b}{s} \quad \text{and} \quad \tan \left( \frac{B}{2} \right) = \frac{s - a}{s} \] where \( s \) is the semi-perimeter of the triangle given by \( s = \frac{a + b + c}{2} \). 2. **Substituting the formulas into the equation**: \[ \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right) = \frac{(s - b)(s - a)}{s^2} \] Therefore, we have: \[ \frac{(s - b)(s - a)}{s^2} = \frac{1}{3} \] 3. **Cross-multiply to eliminate the fraction**: \[ 3(s - b)(s - a) = s^2 \] 4. **Expand the left-hand side**: \[ 3(s^2 - (a + b)s + ab) = s^2 \] This simplifies to: \[ 3s^2 - 3(a + b)s + 3ab = s^2 \] 5. **Rearranging the equation**: \[ 2s^2 - 3(a + b)s + 3ab = 0 \] 6. **Using the quadratic formula**: The quadratic formula is given by: \[ s = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \] Here, \( A = 2 \), \( B = -3(a + b) \), and \( C = 3ab \). 7. **Substituting values**: \[ s = \frac{3(a + b) \pm \sqrt{(-3(a + b))^2 - 4 \cdot 2 \cdot 3ab}}{2 \cdot 2} \] Simplifying further leads to: \[ s = \frac{3(a + b) \pm \sqrt{9(a + b)^2 - 24ab}}{4} \] 8. **Using the condition \( ab = 4 \)**: Substitute \( ab = 4 \) into the equation: \[ s = \frac{3(a + b) \pm \sqrt{9(a + b)^2 - 96}}{4} \] 9. **Finding the relationship between \( a + b \) and \( c \)**: From the semi-perimeter, we know: \[ a + b + c = 2s \] Therefore: \[ c = 2s - (a + b) \] 10. **Using the AM-GM inequality**: The arithmetic mean-geometric mean inequality states: \[ \frac{a + b}{2} \geq \sqrt{ab} \] Thus: \[ a + b \geq 2\sqrt{ab} = 2\sqrt{4} = 4 \] 11. **Substituting back to find \( c \)**: From the earlier relationship: \[ c \geq 2 \] ### Conclusion: Thus, the value of \( c \) can be \( \geq 2 \).

To solve the problem, we need to find the value of side \( c \) in triangle \( ABC \) given that: \[ \frac{\tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}{1} = \frac{1}{3} \] and \( ab = 4 \). ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC, If tan((A-B)/2)=3/11 and a/b=7/4 then the value of angle C is

In a Delta ABC , if tan.(A)/(2)=(5)/(6), tan.(B)/(2)=(20)/(37) , then which of the following is/are correct ?

In any triangle ABC , (tan(A/2)-tan(B/2))/(tan(A/2)+tan(B/2)) is equal to

In a triangle ABC if sin A cos B = 1/4 and 3 tan A = tan B , then the triangle is

In Delta ABC if tan(A/2) tan(B/2) + tan(B/2) tan(C/2) = 2/3 then a+c

In a triangle tan A+ tan B + tan C=6 and tan A tan B= 2, then the values of tan A, tan B and tan C are

In a triangle ABC if sum tan^(2)A= sum tan A tan B , then largest angle of the triangle in radian will be :

if ABC is a triangle and tan(A/2), tan(B/2), tan(C/2) are in H.P. Then find the minimum value of cot(A/2)*cot(C/2)

if ABC is a triangle and tan(A/2), tan(B/2), tan(C/2) are in H.P. Then find the minimum value of cot(B/2)

In any triangle ABC, if sin A , sin B, sin C are in AP, then the maximum value of tan ""B/2 is