Home
Class 12
MATHS
In a triangle ABC if cot(A/2)cot(B/2)=c,...

In a triangle `ABC` if `cot(A/2)cot(B/2)=c, cot(B/2)cot(C/2)=a ` and `cot(C/2)cot(A/2)=b` then `1/(s-a)+1/(s-b)+1/(s-c)=`

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given conditions and derive the required expression. ### Step 1: Understand the Given Conditions We are given: 1. \( \cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) = c \) 2. \( \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) = a \) 3. \( \cot\left(\frac{C}{2}\right) \cot\left(\frac{A}{2}\right) = b \) ### Step 2: Express \( s \) The semi-perimeter \( s \) of triangle \( ABC \) is given by: \[ s = \frac{a + b + c}{2} \] ### Step 3: Rewrite the Cotangent Relationships Using the relationships given, we can express each cotangent in terms of \( s \): 1. From \( \cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) = c \): \[ \cot\left(\frac{A}{2}\right) = \frac{s(s-a)}{(s-b)(s-c)} \] Therefore, \[ \frac{s}{s-c} = c \quad \text{(Equation 1)} \] 2. From \( \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) = a \): \[ \cot\left(\frac{B}{2}\right) = \frac{s(s-b)}{(s-a)(s-c)} \] Therefore, \[ \frac{s}{s-a} = a \quad \text{(Equation 2)} \] 3. From \( \cot\left(\frac{C}{2}\right) \cot\left(\frac{A}{2}\right) = b \): \[ \cot\left(\frac{C}{2}\right) = \frac{s(s-c)}{(s-a)(s-b)} \] Therefore, \[ \frac{s}{s-b} = b \quad \text{(Equation 3)} \] ### Step 4: Find the Required Expression We need to find: \[ \frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} \] Using Equations 1, 2, and 3, we can express \( \frac{1}{s-a}, \frac{1}{s-b}, \frac{1}{s-c} \): - From Equation 1: \( \frac{1}{s-a} = \frac{1}{s} \cdot \frac{1}{c} \) - From Equation 2: \( \frac{1}{s-b} = \frac{1}{s} \cdot \frac{1}{a} \) - From Equation 3: \( \frac{1}{s-c} = \frac{1}{s} \cdot \frac{1}{b} \) ### Step 5: Combine the Expressions Combining these gives: \[ \frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} = \frac{1}{s} \left( \frac{1}{c} + \frac{1}{a} + \frac{1}{b} \right) \] ### Step 6: Simplify the Expression Now, we know that: \[ \frac{1}{c} + \frac{1}{a} + \frac{1}{b} = \frac{a+b+c}{abc} \] Thus, \[ \frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} = \frac{a+b+c}{s \cdot abc} \] ### Step 7: Substitute \( s \) Since \( s = \frac{a+b+c}{2} \), we can substitute this into our expression: \[ \frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} = \frac{2}{abc} \] ### Final Result Thus, the final answer is: \[ \frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} = 2 \]

To solve the problem step by step, we will follow the given conditions and derive the required expression. ### Step 1: Understand the Given Conditions We are given: 1. \( \cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) = c \) 2. \( \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) = a \) 3. \( \cot\left(\frac{C}{2}\right) \cot\left(\frac{A}{2}\right) = b \) ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC prove that cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

If in a triangle ABC ,b +c=4a then cot(B/2)cot(C/2) is equal to

In any Delta ABC , cot(A/2),cot(B/2),cot(C/2) are in A.P. , then

In a triangle ABC , if 3a = b + c , then cot B/2 cot C/2 =

In triangle ABC, if |[1,1,1], [cot (A/2), cot(B/2), cot(C/2)], [tan(B/2)+tan(C/2), tan(C/2)+ tan(A/2), tan(A/2)+ tan(B/2)]| then the triangle must be (A) Equilateral (B) Isoceless (C) Right Angle (D) none of these

In a triangle ABC if b+c=3a then find the value of cot(B/2)cot(C/2)

In any triangle A B C , prove that: (b-c)cot (A/2)+(c-a)cot (B/2)+(a-b)cot (C/2) =0

In a triangle ABC prove that r_1r_2r_3=r^3 cot^2 (A/2). cot^2 (B/2).cot^2(C/2)

In any DeltaABC , prove that cot (A/2) + cot (B/2) + cot (C/2) = (a+b+c)/(b+c-a) cot (A/2)

In a triangle ABC, prove that (cot(A/2)+cot(B/2)+cot(C/2))/(cotA+cotB+cot(C))=((a+b+c)^2)/(a^2+b^2+c^2)