Home
Class 12
MATHS
If in any triangle, the area DeltaABC le...

If in any triangle, the area `DeltaABC le(b^(2)+c^(2))/(lambda)`, then the largest possible numerical value of `lambda` is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the largest possible numerical value of \( \lambda \) such that the area \( \Delta \) of triangle \( ABC \) satisfies the inequality: \[ \Delta \leq \frac{b^2 + c^2}{\lambda} \] ### Step-by-Step Solution: 1. **Express the Area of Triangle**: The area \( \Delta \) of triangle \( ABC \) can be expressed using the formula: \[ \Delta = \frac{1}{2}bc \sin A \] 2. **Set Up the Inequality**: Substitute the expression for the area into the inequality: \[ \frac{1}{2}bc \sin A \leq \frac{b^2 + c^2}{\lambda} \] 3. **Rearrange the Inequality**: Multiply both sides by \( \lambda \) and rearrange: \[ \lambda \cdot \frac{1}{2}bc \sin A \leq b^2 + c^2 \] This can be rewritten as: \[ \lambda \cdot bc \sin A \leq 2(b^2 + c^2) \] 4. **Isolate \( \lambda \)**: Now, isolate \( \lambda \): \[ \lambda \leq \frac{2(b^2 + c^2)}{bc \sin A} \] 5. **Maximize \( \lambda \)**: To find the maximum value of \( \lambda \), we need to minimize the term \( \frac{bc \sin A}{b^2 + c^2} \). The maximum value of \( \sin A \) is 1 (when \( A = 90^\circ \)). Thus: \[ \lambda \leq \frac{2(b^2 + c^2)}{bc} \] 6. **Use the Cauchy-Schwarz Inequality**: By applying the Cauchy-Schwarz inequality: \[ (b+c)^2 \leq 2(b^2 + c^2) \] We can deduce that: \[ \frac{(b+c)^2}{bc} \geq 4 \implies \frac{b^2 + c^2}{bc} \geq 2 \] 7. **Final Calculation**: Thus: \[ \lambda \leq 2 \] Therefore, the largest possible numerical value of \( \lambda \) is \( 2 \). ### Conclusion: The largest possible numerical value of \( \lambda \) is \( 2 \).

To solve the problem, we need to find the largest possible numerical value of \( \lambda \) such that the area \( \Delta \) of triangle \( ABC \) satisfies the inequality: \[ \Delta \leq \frac{b^2 + c^2}{\lambda} \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If x^n-1 is divisible by x-lambda, then the least prositive integral value of lambda is 1 b. 3 c. 4 d. 2

In any DeltaABC , prove that Delta=(b^(2)+c^(2)-a^(2))/(4cotA) .

In any DeltaABC, is 2 cos B=a/c, then the triangle is

If the image of the point M(lambda,lambda^(2)) on the line x+y = lambda^(2) is N(0, 2), then the sum of the square of all the possible values of lambda is equal to

Find the value of tan A, if area of Delta ABC is a^(2) -(b-c)^(2).

If the equations x^(2)+2lambdax+lambda^(2)+1=0 , lambda in R and ax^(2)+bx+c=0 , where a , b , c are lengths of sides of triangle have a common root, then the possible range of values of lambda is

If Delta denotes the area of DeltaABC , then b^(2) sin 2C + c^(2) sin 2B is equal to

The area between the curves x=4y-y^(2) and 0 is lambda square units, then the value of 3lambda is equal to

A matrix A = ({:(2,3),(5,-2):}) is such that A^(-1)= lambda A then what is the value of lambda .

If the tangent drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 at any point P meets the coordinate axes at the points A and B respectively. If the rectangle OACB (O being the origin) is completed, where C lies on (x^2)/(a^2)-(y^2)/(b^2)=lambda . Then, the value of lambda is: