Home
Class 12
MATHS
In Delta ABC, a^(2)(s-a)+b^(2)(s-b)+c^(2...

In `Delta ABC, a^(2)(s-a)+b^(2)(s-b)+c^(2)(s-c)=`

A

`4R Delta(cos A+sin B+cos C)`

B

`4R Delta(sin A+sin B+sin C)`

C

`4R Delta(1+4sin.(A)/(2)sin.(B)/(2)sin.(C )/(2))`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`L.H.S.=(1)/(2)(a^(2)(b+c-a)+b^(2)(c+a-b)+c^(2)(a+b-c))`
`=(1)/(2)(a(b^(2)+c^(2)-a^(2))+b(c^(2)+a^(2)-b^(2))+c(a^(2)+b^(2)-c^(2)))`
`=(1)/(2)(2abc cos A+2abc cos B + 2abc cos C)`
`=abc(1+4 sin.(A)/(2)sin.(B)/(2)sin.(C )/(2))`
`=4R Delta (1+4sin.(A)/(2)sin.(B)/(2)sin.(C )/(2))`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Statement I If the sides of a triangle are 13, 14 15 then the radius of in circle =4 Statement II In a DeltaABC, Delta = sqrt(s (s-a) (s-b) (s-c)) where s=(a+b+c)/(2) and r =(Delta)/(s)

If in Delta ABC, 8R^(2) = a^(2) + b^(2) + c^(2) , then the triangle ABC is

If in Delta ABC, (a -b) (s-c) = (b -c) (s-a) , prove that r_(1), r_(2), r_(3) are in A.P.

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

In Delta ABC , If b/(c^2-a^2)+a/(c^2-b^2)=0 then

If in a triangle ABC, (s-a)/11=(s-b)/12=(s-c)/13. Then 429cot^2 ( A/2 ) is equal to

If in a triangle ABC, (s-a)(s-b)= s(s-c), then angle C is equal to

Statement I In a DeltaABC, sum (cos ^(2)""(A)/(2))/(a ) has the value equal to (s^(2))/(abc). Statement II in a Delta ABC, cos ""A/2=sqrt(((s-b)(s-c))/(bc)) cos ""(beta)/(2)=sqrt(((s-a) (s-c))/(ac)), cos ""c/2= sqrt(((s-a)(s-b))/(ab))