Home
Class 12
MATHS
In Delta ABC, circumrdius is 3 inradius ...

In `Delta ABC`, circumrdius is 3 inradius is 1.5 units. The value of a `acot^(2)A+b^(2)cot^(3)B+c^(3)cot^(4)C` is

A

`13 sqrt(3)`

B

`11sqrt(6)`

C

21

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \cot^2 A + b^2 \cot^3 B + c^3 \cot^4 C \) in triangle \( ABC \) where the circumradius \( R = 3 \) and the inradius \( r = 1.5 \). ### Step-by-Step Solution: 1. **Identify the relationship between circumradius and inradius**: Given that \( R = 3 \) and \( r = 1.5 \), we can check the relationship: \[ \frac{R}{r} = \frac{3}{1.5} = 2 \] This indicates that triangle \( ABC \) is equilateral since for an equilateral triangle, \( R = 2r \). **Hint**: Check the ratio of circumradius to inradius to determine the type of triangle. 2. **Determine the angles of the triangle**: Since triangle \( ABC \) is equilateral, all angles \( A, B, C \) are equal: \[ A = B = C = 60^\circ \] **Hint**: In an equilateral triangle, all angles are equal. 3. **Calculate the sides of the triangle**: The sides \( a, b, c \) can be calculated using the formula: \[ a = 2R \sin A \] Since \( A = 60^\circ \): \[ a = 2 \times 3 \times \sin(60^\circ) = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3} \] Similarly, \( b = c = 3\sqrt{3} \). **Hint**: Use the sine rule to find the sides based on the circumradius. 4. **Calculate \( \cot A, \cot B, \cot C \)**: Since \( A = B = C = 60^\circ \): \[ \cot A = \cot 60^\circ = \frac{1}{\sqrt{3}} \] **Hint**: Remember that \( \cot(60^\circ) = \frac{1}{\tan(60^\circ)} \). 5. **Substitute values into the expression**: Now we substitute \( a, b, c \) and \( \cot A, \cot B, \cot C \) into the expression: \[ a \cot^2 A + b^2 \cot^3 B + c^3 \cot^4 C \] This becomes: \[ (3\sqrt{3}) \left(\frac{1}{\sqrt{3}}\right)^2 + (3\sqrt{3})^2 \left(\frac{1}{\sqrt{3}}\right)^3 + (3\sqrt{3})^3 \left(\frac{1}{\sqrt{3}}\right)^4 \] 6. **Calculate each term**: - First term: \[ (3\sqrt{3}) \cdot \frac{1}{3} = \sqrt{3} \] - Second term: \[ (3\sqrt{3})^2 \cdot \frac{1}{3\sqrt{3}} = 27 \cdot \frac{1}{3\sqrt{3}} = 9\sqrt{3} \] - Third term: \[ (3\sqrt{3})^3 \cdot \frac{1}{9} = 27\sqrt{3} \cdot \frac{1}{9} = 3\sqrt{3} \] 7. **Combine the results**: Now, combine all the terms: \[ \sqrt{3} + 9\sqrt{3} + 3\sqrt{3} = 13\sqrt{3} \] ### Final Answer: The value of \( a \cot^2 A + b^2 \cot^3 B + c^3 \cot^4 C \) is \( 13\sqrt{3} \).

To solve the problem, we need to find the value of \( a \cot^2 A + b^2 \cot^3 B + c^3 \cot^4 C \) in triangle \( ABC \) where the circumradius \( R = 3 \) and the inradius \( r = 1.5 \). ### Step-by-Step Solution: 1. **Identify the relationship between circumradius and inradius**: Given that \( R = 3 \) and \( r = 1.5 \), we can check the relationship: \[ \frac{R}{r} = \frac{3}{1.5} = 2 ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC, if b=20, c=21and sin A =3/5, then the value of a is

If circum-radius and in-radius of a triangle ABC be 10 and 3 units respectively , then a cot A +b cot B +c cot C is equal to

In a triangle ABC if b+c=3a then find the value of cot(B/2)cot(C/2)

In a triangle ABC, if r_1 + r_3 + r = r_2 , then find the value of (sec^2 A + csc^2 B-cot^2 C) ,

If A + B + C=pi , then find the minimum value of cot^2A + cot^2B + cot^2C

In triangle ABC , if a=3, b=4, and c=5, then find the value of cosA.

In a Delta ABC if 9 (a^2 + b^2) = 17c^2 then the value of the (cot A + cot B) / cotC is

In a Delta ABC if 9 (a^2 + b^2) = 17c^2 then the value of the (cot A + cot B) / cotC is

In Delta ABC a =5 ,b=3 ,c=7 .Then value of 3 cos C +7 cos B is equal :-

If three sides a,b,c of a triangle ABC are in arithmetic progression, then the value of cot(A/2), cot(B/2), cot(C/2) are in